Methods for knowledge discovery and interpretable machine learning.
Project description
realkd.py
Methods for knowledge discovery from data and interpretable machine learning. Currently, package contains primarily rule ensembles learners.
>>> import pandas as pd
>>> from sklearn.metrics import roc_auc_score
>>> from realkd.rules import RuleBoostingEstimator, XGBRuleEstimator
>>> titanic = pd.read_csv('../datasets/titanic/train.csv')
>>> survived = titanic.Survived
>>> titanic.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin', 'Survived'], inplace=True)
>>> re = RuleBoostingEstimator(base_learner=XGBRuleEstimator(loss=logistic_loss))
>>> re.fit(titanic, survived.replace(0, -1), verbose=0)
-1.4248 if Pclass>=2 & Sex==male
+1.7471 if Pclass<=2 & Sex==female
+2.5598 if Age<=19.0 & Fare>=7.8542 & Parch>=1.0 & Sex==male & SibSp<=1.0
See the full documentation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
realkd-0.2.1.tar.gz
(22.6 kB
view details)
File details
Details for the file realkd-0.2.1.tar.gz
.
File metadata
- Download URL: realkd-0.2.1.tar.gz
- Upload date:
- Size: 22.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.44.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f55c813169a4b91b6b8798a5c4f198e0989c97b196df159af624f0bb508fd17 |
|
MD5 | 4863f668edbc33e3d9a2583d0a4c1b9a |
|
BLAKE2b-256 | 9e88fadbd74a1fec1a9401455c40dccf92c0203bdc56be0ba0c6413e92423525 |