NLP Toolbox
Project description
Reason
Python easy-to-use natural language processing toolbox.
Toolbox
- Classifier
- Machine learning metrics
- Confusion matrix
- Word and sentence tokenizer
- Frequency distribution
- Bigrams, trigrams and Ngrams.
Install
Install latest stable version using pip:
pip install reason
Quick Start
Classification:
>>> from reason.classify import NaiveBayesClassifier
>>> classifier = NaiveBayesClassifier(train_set)
>>> y_pred = classifier.classify(new_data)
>>> from reason.metrics import accuracy
>>> accuracy(y_true, y_pred)
0.9358
Confusion Matrix:
>>> from reason.metrics import ConfusionMatrix
>>> cm = ConfusionMatrix(y_true, y_pred)
>>> cm
68 21 13
16 70 11
14 10 77
>>> cm[actual, predicted]
16
>>> from reason.metrics import BinaryConfusionMatrix
>>> bcm = BinaryConfusionMatrix(b_y_true, b_y_pred)
>>> bcm.precision()
0.7837
>>> bcm.recall()
0.8055
>>> bcm.f1_score()
0.7944
Word Tokenization:
>>> from reason.tokenize import word_tokenize
>>> text = "Testing reason0.1.0, (on: 127.0.0.1). Cool stuff..."
>>> word_tokenize(text, 'alphanumeric')
['Testing', 'reason0.1.0', 'on', '127.0.0.1', 'Cool', 'stuff']
Sentence Tokenization:
>>> from reason.tokenize import sent_tokenize
>>> text = "Hey, what's up? I love using Reason library!"
>>> sents = sent_tokenize(text)
>>> for sent in sents:
... print(sent)
Hey, what's up?
I love using Reason library!
Frequency Distribution:
>>> from reason.analysis import FreqDist
>>> words = ['hey', 'hey', 'oh', 'oh', 'oh', 'yeah']
>>> fd = FreqDist(words)
>>> fd
Frequency Distribution
Most-Common: [('oh', 3), ('hey', 2), ('yeah', 1)]
>>> fd.most_common(2)
[('oh', 3), ('hey', 2)]
>>> fd['yeah']
1
Ngrams:
>>> sent = 'Reason is easy to use'
>>> from reason.util import bigrams
>>> bigrams(sent)
[('Reason', 'is'), ('is', 'easy'), ('easy', 'to'), ('to', 'use')]
>>> from reason.util import trigrams
>>> trigrams(sent)
[('Reason', 'is', 'easy'), ('is', 'easy', 'to'), ('easy', 'to', 'use')]
>>> from reason.util import ngrams
>>> ngrams(sent, 4)
[('Reason', 'is', 'easy', 'to'), ('is', 'easy', 'to', 'use')]
Dependencies
Keep in mind NumPy will be automatically installed with Reason.
License
MIT -- See LICENSE for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
reason-0.3.0.tar.gz
(224.8 kB
view details)
Built Distribution
reason-0.3.0-py3-none-any.whl
(236.5 kB
view details)
File details
Details for the file reason-0.3.0.tar.gz
.
File metadata
- Download URL: reason-0.3.0.tar.gz
- Upload date:
- Size: 224.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.23.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0b0ba63348e4ab14125a3e45743a36058bca136f47da03b9128c42b947eef11a |
|
MD5 | 73d18b47cb6bfdd094e2e16cf2bd65e9 |
|
BLAKE2b-256 | 074903e48cc1334423e6466c13fe84318e7b9e78976b2dd6bbba84b77bff3c73 |
File details
Details for the file reason-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: reason-0.3.0-py3-none-any.whl
- Upload date:
- Size: 236.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.23.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7363ad5e67c1a027e8afea4900006905b31b9f0aa61cecb6f846796deecb2e4 |
|
MD5 | 58a8a96cbfc7522bbeb4126d316b948d |
|
BLAKE2b-256 | 7724f2295eab021edc1add9a7567dbdec7e712343579ed1c4df66e5c2219f312 |