Skip to main content

A simple package about learning recommendation

Project description

RecLearn

简体中文English

RecLearn (Recommender Learning) which summarizes the contents of the master branch in Recommender System with TF2.0 is a recommended learning framework based on Python and TensorFlow2.x for students and beginners. The implemented recommendation algorithms are classified according to two application stages in the industry:

  • matching recommendation stage
  • ranking recommendeation stage

Installation

RecLearn is on PyPI, so you can use pip to install it.

pip install reclearn

dependent environment:

  • python3.7+
  • Tensorflow2.6+
  • sklearn

Quick Start

In example, we have given a demo of each of the recommended models.

Firstly,building dataset.

Then, constructing model.

Finally, Compile, Fit and Predict

Model List

1. Matching Stage

Paper|Model Published Author
BPR: Bayesian Personalized Ranking from Implicit Feedback|MF-BPR UAI, 2009 Steffen Rendle
Neural network-based Collaborative Filtering|NCF WWW, 2017 Xiangnan He
Self-Attentive Sequential Recommendation|SASRec ICDM, 2018 UCSD
Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding|Caser WSDM, 2018 Jiaxi Tang
Next Item Recommendation with Self-Attentive Metric Learning|AttRec AAAAI, 2019 Shuai Zhang

2. Ranking Stage

Paper|Model Published Author
Factorization Machines|FM ICDM, 2010 Steffen Rendle
Field-aware Factorization Machines for CTR Prediction|FFM RecSys, 2016 Criteo Research
Wide & Deep Learning for Recommender Systems|WDL DLRS, 2016 Google Inc.
Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features|Deep Crossing KDD, 2016 Microsoft Research
Product-based Neural Networks for User Response Prediction|PNN ICDM, 2016 Shanghai Jiao Tong University
Deep & Cross Network for Ad Click Predictions|DCN ADKDD, 2017 Stanford University|Google Inc.
Neural Factorization Machines for Sparse Predictive Analytics|NFM SIGIR, 2017 Xiangnan He
Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks|AFM IJCAI, 2017 Zhejiang University|National University of Singapore
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction|DeepFM IJCAI, 2017 Harbin Institute of Technology|Noah’s Ark Research Lab, Huawei
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems|xDeepFM KDD, 2018 University of Science and Technology of China
Deep Interest Network for Click-Through Rate Prediction|DIN KDD, 2018 Alibaba Group

Discussion

  1. If you have any suggestions or questions about the project, you can leave a comment on Issue or email zggzy1996@163.com.
  2. wechat:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

reclearn-1.0.1.tar.gz (25.4 kB view details)

Uploaded Source

Built Distribution

reclearn-1.0.1-py3-none-any.whl (39.4 kB view details)

Uploaded Python 3

File details

Details for the file reclearn-1.0.1.tar.gz.

File metadata

  • Download URL: reclearn-1.0.1.tar.gz
  • Upload date:
  • Size: 25.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for reclearn-1.0.1.tar.gz
Algorithm Hash digest
SHA256 3503b401490d7c1d6e1bd3d3c0ca6e4a01730419b5126f32bf11d91ef79cdd49
MD5 3c4017e6cee9d4b6a85ffbabf9d9e5af
BLAKE2b-256 ac7dddc0744854d5668895fa1fa74eb4313ec3c530592e575d77eef00960e944

See more details on using hashes here.

File details

Details for the file reclearn-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: reclearn-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 39.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for reclearn-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ff2e30a2066107f5c1b45d6bc8160ebfe67c0c71707479ce8944d87fc2c17276
MD5 ff7a56a303cd9086d52874363d31b504
BLAKE2b-256 2e252f2bde7d26f0e06d9171f8a57b1e1b7c8d892fe000550e7df63a68c63401

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page