Skip to main content

Tools to make codecs for time-series serialization and deserialization.

Project description

recode

Make codecs for fixed size structured chunks serialization and deserialization of sequences, tabular data, and time-series.

To install: pip install recode

Docmentation

Make codecs for fixed size structured chunks serialization and deserialization of sequences, tabular data, and time-series.

The easiest and bigest bang for your buck is mk_codec

>>> from recode import mk_codec
>>> encoder, decoder = mk_codec()

encoder will encode a list (or any iterable) of numbers into bytes

>>> b = encoder([0, -3, 3.14])
>>> b
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xc0\x1f\x85\xebQ\xb8\x1e\t@'

decoder will decode those bytes to get you back your numbers

>>> decoder(b)
[0.0, -3.0, 3.14]

There's only really one argument you need to know about in mk_codec. The first argument, called chk_format, which is a string of characters from the "Format" column of the python format characters

The one we've just been through is in fact

>>> encoder, decoder = mk_codec('d')

That is, it will expect that your data is a list of numbers, and they'll be encoded with the 'd' format character, that is 8-bytes doubles. That default is good because it gives you a lot of room, but if you knew that you would only be dealing with 2-byte integers (as in most WAV audio waveforms), you would have chosen h:

>>> encoder, decoder = mk_codec('h')

What about those channels? Well, some times you need to encode/decode multi-channel streams, such as:

>>> multi_channel_stream = [[3, -1], [4, -1], [5, -9]]

Say, for example, if you were dealing with stereo waveform (with the standard PCM_16 format), you'd do it this way:

>>> encoder, decoder = mk_codec('hh')
>>> pcm_bytes = encoder(multi_channel_stream)
>>> pcm_bytes
b'\x03\x00\xff\xff\x04\x00\xff\xff\x05\x00\xf7\xff'
>>> decoder(pcm_bytes)
[(3, -1), (4, -1), (5, -9)]

The n_channels and chk_size_bytes arguments are there if you want to assert that your number of channels and chunk size are what you expect. Again, these are just for verification, because we know how easy it is to misspecify the chk_format, and how hard it can be to notice that we did.

It is advised to use these in any production code, for the sanity of everyone!

>>> mk_codec('hhh', n_channels=2)
Traceback (most recent call last):
  ...
AssertionError: You said there'd be 2 channels, but I inferred 3
>>> mk_codec('hhh', chk_size_bytes=3)
Traceback (most recent call last):
  ...
AssertionError: The given chk_size_bytes 3 did not match the inferred (from chk_format) 6

Finally, so far we've done it this way:

>>> encoder, decoder = mk_codec('hHifd')

But see that what's actually returned is a NAMED tuple, which means that you can can also get one object that will have .encode and .decode properties:

>>> codec = mk_codec('hHifd')
>>> to_encode = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]
>>> encoded = codec.encode(to_encode)
>>> decoded = codec.decode(encoded)
>>> decoded
[(1, 2, 3, 4.0, 5.0), (6, 7, 8, 9.0, 10.0)]

And you can checkout the properties of your encoder and decoder (they should be the same)

>>> codec.encode.chk_format
'hHifd'
>>> codec.encode.n_channels
5
>>> codec.encode.chk_size_bytes
24

Further functionality and under-the-hood peeps

This section shows various examples of recode and it how it can be used with:

  • Single channel numerical streams
  • Multi-channel numerical streams
  • DataFrames
  • Iterators
from recode import (ChunkedEncoder, 
                    ChunkedDecoder, 
                    MetaEncoder, 
                    MetaDecoder, 
                    IterativeDecoder, 
                    StructCodecSpecs, 
                    specs_from_frames,
                    frame_to_meta,
                    meta_to_frame)

Quick run through

First define the frame you want to encode

frame = [1,2,3]

Next define the specifications for that encoding

specs = StructCodecSpecs(chk_format='h')
specs
StructCodecSpecs(chk_format='h', n_channels=1, chk_size_bytes=2)

Next define an encoder and encode your frame to bytes

encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
b = encoder(frame)
b
b'\x01\x00\x02\x00\x03\x00'

Once you need your original frame again, define a decoder and decode your frame

decoder = ChunkedDecoder(specs.chk_to_frame)
decoded_frames = decoder(b)
decoded_frames
[1, 2, 3]

Step-by-step explanation

Define your StructCodecSpecs

StructCodecSpecs is used to define the specs for making codecs for fixed size structured chunks serialization and deserialization of sequences, tabular data, and time-series. This definition is based on format strings of the python struct module.

There are two ways to define StructCodecSpecs, the first being to explicitly define it using the StructCodecSpecs class. StructCodecSpecs takes three arguments: chk_format, n_channels, and chk_size_bytes.

Only chk_format is required, as n_channels and chk_size_bytes can be determined based on chk_format. If n_channels or chk_size_bytes are given, they will be used to assert that the values inferred from chk_format match.

If this is not the case, then do not provide an argument for n_channels and instead pass a string with the format character matching the data type for each channel in the frame to chk_format. For example if the first channel contains integers and the second contains floats, then chk_format = 'hd'.

frame = [1,2,3]
specs = StructCodecSpecs(chk_format='h')
specs
StructCodecSpecs(chk_format='h', n_channels=1, chk_size_bytes=2)

The second way to define StructCodecSpecs is to use specs_from_frames which will implictly define StructCodecSpecs based on the frame that is going to be encoded/decoded. This function will return a tuple containing a reconstituted version of the iterator given as an input, and the defined StructCodecSpecs. The first element of the tuple can be ignored if the frame passed is not an iterator.

_, specs = specs_from_frames(frame)
specs
StructCodecSpecs(chk_format='h', n_channels=1, chk_size_bytes=2)

If frame is an iterator, then redefine frame as the first argument of the tuple so the first element of frame is not lost for encoding.

frame = iter([[1,2], [3,4]])
frame, specs = specs_from_frames(frame)
specs, list(frame)
(StructCodecSpecs(chk_format='hh', n_channels=2, chk_size_bytes=4),
 [[1, 2], [3, 4]])

Define your Encoder

Your Encoder will allow you to, you guessed it, encode your frames! There are two Encoders currently defined in recode: ChunkedEncoder and MetaEncoder.

ChunkedEncoder should be your goto encoder for sequences, while MetaEncoder works best for tabular data (currently must be in the format of list of dicts).

frame = [1,2,3]
_, specs = specs_from_frames(frame)
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
b = encoder(frame)
b
b'\x01\x00\x02\x00\x03\x00'

When using a MetaEncoder, an extra argument named frame_to_meta is required, which can be easily imported from recode!

frame = [{'foo': 1, 'bar': 1}, {'foo': 2, 'bar': 2}, {'foo': 3, 'bar': 4}]
_, specs = specs_from_frames(frame)
encoder = MetaEncoder(frame_to_chk=specs.frame_to_chk, frame_to_meta=frame_to_meta)
b = encoder(frame)
b
b'\x07\x00foo.bar\x01\x00\x01\x00\x02\x00\x02\x00\x03\x00\x04\x00'

Define your Decoder

Next up your Decoder will allow you to decode your encoded bytes. There are three Encoders currently defined in recode: ChunkedDecoder, IterativeDecoder, and MetaDecoder.

Either ChunkedDecoder or IterativeDecoder will work well for sequences, with the only difference being that IterativeDecoder returns an iterator of decoded chunks while ChunkedDecoder returns the whole list of decoded chunks. MetaDecoder works best for tabular data encoded with MetaEncoder.

frame = [1,2,3]
_, specs = specs_from_frames(frame)
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(specs.chk_to_frame)
b = encoder(frame)
decoder(b)
[1, 2, 3]

As is shown in the following example, an IterativeDecoder will return an unpack_iterator.

frame = [[1,1],[2,2]]
_, specs = specs_from_frames(frame)
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = IterativeDecoder(chk_to_frame=specs.chk_to_frame)
b = encoder(frame)
iter_frames = decoder(b)
print(type(iter_frames))
next(iter_frames), next(iter_frames)
<class 'unpack_iterator'>
((1, 1), (2, 2))

When using a MetaDecoder, an extra argument named meta_to_frame is required, which can be easily imported from recode!

frame = [{'foo': 1, 'bar': 1}, {'foo': 2, 'bar': 2}, {'foo': 3, 'bar': 4}]
_, specs = specs_from_frames(frame)
encoder = MetaEncoder(frame_to_chk=specs.frame_to_chk, frame_to_meta=frame_to_meta)
decoder = MetaDecoder(chk_to_frame=specs.chk_to_frame, meta_to_frame=meta_to_frame)
b = encoder(frame)
decoded_frames = decoder(b)
decoded_frames
[{'foo': 1, 'bar': 1}, {'foo': 2, 'bar': 2}, {'foo': 3, 'bar': 4}]

Encoding a waveform

Create a synthetic waveform using hum

from hum.gen.sine_mix import freq_based_stationary_wf
import matplotlib.pyplot as plt
import numpy as np

DFLT_N_SAMPLES = 21 * 2048
DFLT_SR = 44100
wf_mix = freq_based_stationary_wf(freqs=(200, 400, 600, 800), weights=None,
                             n_samples = DFLT_N_SAMPLES, sr = DFLT_SR)
plt.plot(wf_mix[:300]);

png

wf_mix
array([0.        , 0.07114157, 0.14170624, ..., 0.49480205, 0.54853009,
       0.5979443 ])

Encode the wf

specs = StructCodecSpecs('d')
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
b = encoder(wf_mix)
b[:100]
b'\x00\x00\x00\x00\x00\x00\x00\x00\x1b:\x11\x8dU6\xb2?\xb8!\xa2\x15n#\xc2?\xe6I\xedz\x15\x06\xcb?L;\xe6\xfah\xd8\xd1?}\x8c\x9b\x9a\xf5\x08\xd6?D\xcc\xf1\x897\x0c\xda?\xe3\xc5\xbeb/\xda\xdd?DE\xb6K\xb6\xb5\xe0?\x82|\xfcz\x90\\\xe2?\xae3:$\x99\xde\xe3?\x1e\x95\xbe\xef$9\xe5?\x81\xd7\xdc\xec'

Decode and compare to wf_mix

decoded_wf_mix = decoder(b)
plt.plot(decoded_wf_mix[:300]);

png

np.all(decoded_wf_mix == wf_mix)
True

Encoding a pandas dataframe

import pandas as pd

Create/import your dataframe

df = pd.DataFrame(data = [[1,2,3],[4,5,6]], columns = ['foo', 'bar', 'set'])
df
foo bar set
0 1 2 3
1 4 5 6

Prep the dataframe for encoding

frame = df.to_dict('records')
frame
[{'foo': 1, 'bar': 2, 'set': 3}, {'foo': 4, 'bar': 5, 'set': 6}]

Encode the list of dicts

_, specs = specs_from_frames(frame)
encoder = MetaEncoder(frame_to_chk=specs.frame_to_chk, frame_to_meta=frame_to_meta)
decoder = MetaDecoder(chk_to_frame=specs.chk_to_frame, meta_to_frame=meta_to_frame)
b = encoder(frame)
b
b'\x0b\x00foo.bar.set\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00'
decoded_frame = decoder(b)
decoded_frame
[{'foo': 1, 'bar': 2, 'set': 3}, {'foo': 4, 'bar': 5, 'set': 6}]
decoded_df = pd.DataFrame(decoded_frame)
print(np.all(decoded_df == df))
decoded_df
True
foo bar set
0 1 2 3
1 4 5 6

Miscellaneous information

Byte order, Size, and Alignment

This table provides the characters associated with Byte order, Size, and Alignment. If one of these characters is not given as the first character of the format string, then @ will be assumed. More information about Byte order, Size, and Alignment can be found here.

Character Byte order Size Alignment
@ native native native
= native standard none
< little-endian standard none
> big-endian standard none
! network (=big-endian) standard none

Full Examples

Single channel numerical stream

from recode import StructCodecSpecs, ChunkedEncoder, ChunkedDecoder
specs = StructCodecSpecs(chk_format='h')
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
frames = [1, 2, 3]
b = encoder(frames)
assert b == b'\x01\x00\x02\x00\x03\x00'
decoded_frames = decoder(b)
assert decoded_frames == frames

Multi-channel numerical stream

from recode import StructCodecSpecs, ChunkedEncoder, ChunkedDecoder
specs = StructCodecSpecs(chk_format='@hh', n_channels = 2)
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
frames = [(1, 2), (3, 4), (5, 6)]
b = encoder(frames)
assert b == b'\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00'
decoded_frames = decoder(b)
assert decoded_frames == frames

Iterative decoder

from recode import StructCodecSpecs, ChunkedEncoder, IterativeDecoder
specs = StructCodecSpecs(chk_format = 'hdhd')
encoder = ChunkedEncoder(frame_to_chk = specs.frame_to_chk)
decoder = IterativeDecoder(chk_to_frame = specs.chk_to_frame)
frames = [(1,1.1,1,1.1),(2,2.2,2,2.2),(3,3.3,3,3.3)]
b = encoder(frames)
iter_frames = decoder(b)
assert next(iter_frames) == frames[0]
next(iter_frames)
(2, 2.2, 2, 2.2)

DataFrame (as list of dicts) using MetaEncoder/MetaDecoder

from recode import StructCodecSpecs, MetaEncoder, MetaDecoder, frame_to_meta, meta_to_frame
data = [{'foo': 1.1, 'bar': 2.2}, {'foo': 513.23, 'bar': 456.1}, {'foo': 32.0, 'bar': 6.7}]
specs = StructCodecSpecs(chk_format='dd', n_channels = 2)
encoder = MetaEncoder(frame_to_chk = specs.frame_to_chk, frame_to_meta = frame_to_meta)
decoder = MetaDecoder(chk_to_frame = specs.chk_to_frame, meta_to_frame = meta_to_frame)
b = encoder(data)
assert decoder(b) == data

Implicitly define codec specs based on frames

from recode import specs_from_frames, ChunkedEncoder, ChunkedDecoder
frames = [1,2,3]
_, specs = specs_from_frames(frames)
encoder = ChunkedEncoder(frame_to_chk = specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
b = encoder(frames)
assert b == b'\x01\x00\x02\x00\x03\x00'
decoded_frames = decoder(b)
decoded_frames
[1, 2, 3]

Implicit definition of iterator

from recode import specs_from_frames, ChunkedEncoder, IterativeDecoder
frames = iter([[1.1,2.2],[3.3,4.4]])
frames, specs = specs_from_frames(frames)
encoder = ChunkedEncoder(frame_to_chk = specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
b = encoder(frames)
decoded_frames = list(decoder(b))
assert decoded_frames == [(1.1,2.2),(3.3,4.4)]

More

Example of recode functionality to read and write audio files

In the below example we can see that the functionality of reading and writing audio to bytes is replicated in recode. An example of a waveform audio file is first created using mk_wf. Then, that example wave form is converted to bytes using BytesIO and soundfile.write. Then, that same example wave form is converted to bytes using recode functionality. Finally it can be seen through the assertions that soundfile's read/write and recode's encode/decode provide the same functionality for audio files (aside from the header in soundfile as a result of the .wav format).

import soundfile as sf
from io import BytesIO
from enum import Enum
import numpy as np
from recode import ChunkedDecoder, ChunkToFrame, ChunkedEncoder, StructCodecSpecs

class Kind(Enum):
    random = 'random'
    increasing = 'increasing'

def mk_wf(n_samples=2048, kind: Kind=Kind.random, **kwargs):
    if kind == Kind.random:
        dtype_str = kwargs.get('num_type', 'int16')
        if dtype_str.startswith('int'):
            low = kwargs.get('low', int(-2**15))
            high = kwargs.get('high', int(2**15-1))
            wf = np.random.randint(low=low, high=high, size=n_samples, dtype=dtype_str)
        else:
            raise TypeError("Don't know how to handle this case")
    else:
        raise TypeError("Don't know how to handle this case")
    return wf

wf = mk_wf(25)
sr = 10000

file = BytesIO()
sf.write(file, wf, sr, format = 'WAV')
file.seek(0)
b = file.read()

specs = StructCodecSpecs('h')
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(chk_size_bytes=specs.chk_size_bytes, 
                         chk_to_frame=specs.chk_to_frame, 
                         n_channels=specs.n_channels)
d = encoder(wf)

assert d == b[44:]

sf_read = sf.read(BytesIO(b), dtype='int16')
recode_read = decoder(d)

assert np.all(sf_read[0] == recode_read)
assert np.all(recode_read == wf)
assert np.all(sf_read[0] == wf)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

recode-0.1.31.tar.gz (24.0 kB view details)

Uploaded Source

File details

Details for the file recode-0.1.31.tar.gz.

File metadata

  • Download URL: recode-0.1.31.tar.gz
  • Upload date:
  • Size: 24.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for recode-0.1.31.tar.gz
Algorithm Hash digest
SHA256 772e9662086d45ad10dbdc2226f28bef168f5b3c808fbe142d697363123ba57a
MD5 180b5f811e2bc719f600387b3bf2149f
BLAKE2b-256 2dfc81c406917d34e05fe7d572739e851d614b1b055fdf4edba293faaac34a58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page