Tools to make codecs for time-series serialization and deserialization.
Project description
recode
Make codecs for fixed size structured chunks serialization and deserialization of sequences, tabular data, and time-series.
To install: pip install recode
Make codecs for fixed size structured chunks serialization and deserialization of sequences, tabular data, and time-series.
The easiest and bigest bang for your buck is mk_codec
>>> from recode import mk_codec
>>> encoder, decoder = mk_codec()
encoder
will encode a list (or any iterable) of numbers into bytes
>>> b = encoder([0, -3, 3.14])
>>> b
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xc0\x1f\x85\xebQ\xb8\x1e\t@'
decoder
will decode those bytes to get you back your numbers
>>> decoder(b)
[0.0, -3.0, 3.14]
There's only really one argument you need to know about in mk_codec
.
The first argument, called chk_format
, which is a string of characters from
the "Format" column of the python
format characters
The one we've just been through is in fact
>>> encoder, decoder = mk_codec('d')
That is, it will expect that your data is a list of numbers, and they'll be encoded
with the 'd' format character, that is 8-bytes doubles.
That default is good because it gives you a lot of room, but if you knew that you
would only be dealing with 2-byte integers (as in most WAV audio waveforms),
you would have chosen h
:
>>> encoder, decoder = mk_codec('h')
What about those channels? Well, some times you need to encode/decode multi-channel streams, such as:
>>> multi_channel_stream = [[3, -1], [4, -1], [5, -9]]
Say, for example, if you were dealing with stereo waveform (with the standard PCM_16 format), you'd do it this way:
>>> encoder, decoder = mk_codec('hh')
>>> pcm_bytes = encoder(multi_channel_stream)
>>> pcm_bytes
b'\x03\x00\xff\xff\x04\x00\xff\xff\x05\x00\xf7\xff'
>>> decoder(pcm_bytes)
[(3, -1), (4, -1), (5, -9)]
The n_channels
and chk_size_bytes
arguments are there if you want to assert
that your number of channels and chunk size are what you expect.
Again, these are just for verification, because we know how easy it is to
misspecify the chk_format
, and how hard it can be to notice that we did.
It is advised to use these in any production code, for the sanity of everyone!
>>> mk_codec('hhh', n_channels=2)
Traceback (most recent call last):
...
AssertionError: You said there'd be 2 channels, but I inferred 3
>>> mk_codec('hhh', chk_size_bytes=3)
Traceback (most recent call last):
...
AssertionError: The given chk_size_bytes 3 did not match the inferred (from chk_format) 6
Finally, so far we've done it this way:
>>> encoder, decoder = mk_codec('hHifd')
But see that what's actually returned is a NAMED tuple, which means that you can
can also get one object that will have .encode
and .decode
properties:
>>> codec = mk_codec('hHifd')
>>> to_encode = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]
>>> encoded = codec.encode(to_encode)
>>> decoded = codec.decode(encoded)
>>> decoded
[(1, 2, 3, 4.0, 5.0), (6, 7, 8, 9.0, 10.0)]
And you can checkout the properties of your encoder and decoder (they should be the same)
>>> codec.encode.chk_format
'hHifd'
>>> codec.encode.n_channels
5
>>> codec.encode.chk_size_bytes
24
Further functionality and under-the-hood peeps
This section shows various examples of recode and it how it can be used with:
- Single channel numerical streams
- Multi-channel numerical streams
- DataFrames
- Iterators
from recode import (ChunkedEncoder,
ChunkedDecoder,
MetaEncoder,
MetaDecoder,
IterativeDecoder,
StructCodecSpecs,
specs_from_frames,
frame_to_meta,
meta_to_frame)
Quick run through
First define the frame you want to encode
frame = [1,2,3]
Next define the specifications for that encoding
specs = StructCodecSpecs(chk_format='h')
specs
StructCodecSpecs(chk_format='h', n_channels=1, chk_size_bytes=2)
Next define an encoder and encode your frame to bytes
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
b = encoder(frame)
b
b'\x01\x00\x02\x00\x03\x00'
Once you need your original frame again, define a decoder and decode your frame
decoder = ChunkedDecoder(specs.chk_to_frame)
decoded_frames = decoder(b)
decoded_frames
[1, 2, 3]
Step-by-step explanation
Define your StructCodecSpecs
StructCodecSpecs is used to define the specs for making codecs for fixed size structured chunks serialization and deserialization of sequences, tabular data, and time-series. This definition is based on format strings of the python struct module.
There are two ways to define StructCodecSpecs, the first being to explicitly
define it using the StructCodecSpecs class.
StructCodecSpecs takes three arguments: chk_format
, n_channels
,
and chk_size_bytes
.
Only chk_format
is required,
as n_channels
and chk_size_bytes
can be determined based on chk_format
.
If n_channels
or chk_size_bytes
are given, they will be used to
assert that the values inferred from chk_format
match.
If this is not the case, then do not provide an argument for n_channels
and instead pass a string with the format character matching the data type for
each channel in the frame to chk_format
.
For example if the first channel
contains integers and the second contains floats, then chk_format = 'hd'
.
frame = [1,2,3]
specs = StructCodecSpecs(chk_format='h')
specs
StructCodecSpecs(chk_format='h', n_channels=1, chk_size_bytes=2)
The second way to define StructCodecSpecs is to use specs_from_frames
which will implictly define StructCodecSpecs based on the frame that is going to be encoded/decoded. This function will return a tuple containing a reconstituted version of the iterator given as an input, and the defined StructCodecSpecs. The first element of the tuple can be ignored if the frame passed is not an iterator.
_, specs = specs_from_frames(frame)
specs
StructCodecSpecs(chk_format='h', n_channels=1, chk_size_bytes=2)
If frame is an iterator, then redefine frame as the first argument of the tuple so the first element of frame is not lost for encoding.
frame = iter([[1,2], [3,4]])
frame, specs = specs_from_frames(frame)
specs, list(frame)
(StructCodecSpecs(chk_format='hh', n_channels=2, chk_size_bytes=4),
[[1, 2], [3, 4]])
Define your Encoder
Your Encoder will allow you to, you guessed it, encode your frames! There are two Encoders currently defined in recode: ChunkedEncoder
and MetaEncoder
.
ChunkedEncoder
should be your goto encoder for sequences, while MetaEncoder
works best for tabular data (currently must be in the format of list of dicts).
frame = [1,2,3]
_, specs = specs_from_frames(frame)
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
b = encoder(frame)
b
b'\x01\x00\x02\x00\x03\x00'
When using a MetaEncoder
, an extra argument named frame_to_meta is required, which can be easily imported from recode!
frame = [{'foo': 1, 'bar': 1}, {'foo': 2, 'bar': 2}, {'foo': 3, 'bar': 4}]
_, specs = specs_from_frames(frame)
encoder = MetaEncoder(frame_to_chk=specs.frame_to_chk, frame_to_meta=frame_to_meta)
b = encoder(frame)
b
b'\x07\x00foo.bar\x01\x00\x01\x00\x02\x00\x02\x00\x03\x00\x04\x00'
Define your Decoder
Next up your Decoder will allow you to decode your encoded bytes. There are three Encoders currently defined in recode: ChunkedDecoder
, IterativeDecoder
, and MetaDecoder
.
Either ChunkedDecoder
or IterativeDecoder
will work well for sequences, with the only difference being that IterativeDecoder
returns an iterator of decoded chunks while ChunkedDecoder
returns the whole list of decoded chunks. MetaDecoder
works best for tabular data encoded with MetaEncoder
.
frame = [1,2,3]
_, specs = specs_from_frames(frame)
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(specs.chk_to_frame)
b = encoder(frame)
decoder(b)
[1, 2, 3]
As is shown in the following example, an IterativeDecoder
will return an unpack_iterator.
frame = [[1,1],[2,2]]
_, specs = specs_from_frames(frame)
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = IterativeDecoder(chk_to_frame=specs.chk_to_frame)
b = encoder(frame)
iter_frames = decoder(b)
print(type(iter_frames))
next(iter_frames), next(iter_frames)
<class 'unpack_iterator'>
((1, 1), (2, 2))
When using a MetaDecoder
, an extra argument named meta_to_frame is required, which can be easily imported from recode!
frame = [{'foo': 1, 'bar': 1}, {'foo': 2, 'bar': 2}, {'foo': 3, 'bar': 4}]
_, specs = specs_from_frames(frame)
encoder = MetaEncoder(frame_to_chk=specs.frame_to_chk, frame_to_meta=frame_to_meta)
decoder = MetaDecoder(chk_to_frame=specs.chk_to_frame, meta_to_frame=meta_to_frame)
b = encoder(frame)
decoded_frames = decoder(b)
decoded_frames
[{'foo': 1, 'bar': 1}, {'foo': 2, 'bar': 2}, {'foo': 3, 'bar': 4}]
Encoding a waveform
Create a synthetic waveform using hum
from hum.gen.sine_mix import freq_based_stationary_wf
import matplotlib.pyplot as plt
import numpy as np
DFLT_N_SAMPLES = 21 * 2048
DFLT_SR = 44100
wf_mix = freq_based_stationary_wf(freqs=(200, 400, 600, 800), weights=None,
n_samples = DFLT_N_SAMPLES, sr = DFLT_SR)
plt.plot(wf_mix[:300]);
wf_mix
array([0. , 0.07114157, 0.14170624, ..., 0.49480205, 0.54853009,
0.5979443 ])
Encode the wf
specs = StructCodecSpecs('d')
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
b = encoder(wf_mix)
b[:100]
b'\x00\x00\x00\x00\x00\x00\x00\x00\x1b:\x11\x8dU6\xb2?\xb8!\xa2\x15n#\xc2?\xe6I\xedz\x15\x06\xcb?L;\xe6\xfah\xd8\xd1?}\x8c\x9b\x9a\xf5\x08\xd6?D\xcc\xf1\x897\x0c\xda?\xe3\xc5\xbeb/\xda\xdd?DE\xb6K\xb6\xb5\xe0?\x82|\xfcz\x90\\\xe2?\xae3:$\x99\xde\xe3?\x1e\x95\xbe\xef$9\xe5?\x81\xd7\xdc\xec'
Decode and compare to wf_mix
decoded_wf_mix = decoder(b)
plt.plot(decoded_wf_mix[:300]);
np.all(decoded_wf_mix == wf_mix)
True
Encoding a pandas dataframe
import pandas as pd
Create/import your dataframe
df = pd.DataFrame(data = [[1,2,3],[4,5,6]], columns = ['foo', 'bar', 'set'])
df
foo | bar | set | |
---|---|---|---|
0 | 1 | 2 | 3 |
1 | 4 | 5 | 6 |
Prep the dataframe for encoding
frame = df.to_dict('records')
frame
[{'foo': 1, 'bar': 2, 'set': 3}, {'foo': 4, 'bar': 5, 'set': 6}]
Encode the list of dicts
_, specs = specs_from_frames(frame)
encoder = MetaEncoder(frame_to_chk=specs.frame_to_chk, frame_to_meta=frame_to_meta)
decoder = MetaDecoder(chk_to_frame=specs.chk_to_frame, meta_to_frame=meta_to_frame)
b = encoder(frame)
b
b'\x0b\x00foo.bar.set\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00'
decoded_frame = decoder(b)
decoded_frame
[{'foo': 1, 'bar': 2, 'set': 3}, {'foo': 4, 'bar': 5, 'set': 6}]
decoded_df = pd.DataFrame(decoded_frame)
print(np.all(decoded_df == df))
decoded_df
True
foo | bar | set | |
---|---|---|---|
0 | 1 | 2 | 3 |
1 | 4 | 5 | 6 |
Miscellaneous information
Byte order, Size, and Alignment
This table provides the characters associated with Byte order, Size, and Alignment. If one of these characters is not given as the first character of the format string, then @
will be assumed. More information about Byte order, Size, and Alignment can be found here.
Character | Byte order | Size | Alignment |
---|---|---|---|
@ | native | native | native |
= | native | standard | none |
< | little-endian | standard | none |
> | big-endian | standard | none |
! | network (=big-endian) | standard | none |
Full Examples
Single channel numerical stream
from recode import StructCodecSpecs, ChunkedEncoder, ChunkedDecoder
specs = StructCodecSpecs(chk_format='h')
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
frames = [1, 2, 3]
b = encoder(frames)
assert b == b'\x01\x00\x02\x00\x03\x00'
decoded_frames = decoder(b)
assert decoded_frames == frames
Multi-channel numerical stream
from recode import StructCodecSpecs, ChunkedEncoder, ChunkedDecoder
specs = StructCodecSpecs(chk_format='@hh', n_channels = 2)
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
frames = [(1, 2), (3, 4), (5, 6)]
b = encoder(frames)
assert b == b'\x01\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00'
decoded_frames = decoder(b)
assert decoded_frames == frames
Iterative decoder
from recode import StructCodecSpecs, ChunkedEncoder, IterativeDecoder
specs = StructCodecSpecs(chk_format = 'hdhd')
encoder = ChunkedEncoder(frame_to_chk = specs.frame_to_chk)
decoder = IterativeDecoder(chk_to_frame = specs.chk_to_frame)
frames = [(1,1.1,1,1.1),(2,2.2,2,2.2),(3,3.3,3,3.3)]
b = encoder(frames)
iter_frames = decoder(b)
assert next(iter_frames) == frames[0]
next(iter_frames)
(2, 2.2, 2, 2.2)
DataFrame (as list of dicts) using MetaEncoder/MetaDecoder
from recode import StructCodecSpecs, MetaEncoder, MetaDecoder, frame_to_meta, meta_to_frame
data = [{'foo': 1.1, 'bar': 2.2}, {'foo': 513.23, 'bar': 456.1}, {'foo': 32.0, 'bar': 6.7}]
specs = StructCodecSpecs(chk_format='dd', n_channels = 2)
encoder = MetaEncoder(frame_to_chk = specs.frame_to_chk, frame_to_meta = frame_to_meta)
decoder = MetaDecoder(chk_to_frame = specs.chk_to_frame, meta_to_frame = meta_to_frame)
b = encoder(data)
assert decoder(b) == data
Implicitly define codec specs based on frames
from recode import specs_from_frames, ChunkedEncoder, ChunkedDecoder
frames = [1,2,3]
_, specs = specs_from_frames(frames)
encoder = ChunkedEncoder(frame_to_chk = specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
b = encoder(frames)
assert b == b'\x01\x00\x02\x00\x03\x00'
decoded_frames = decoder(b)
decoded_frames
[1, 2, 3]
Implicit definition of iterator
from recode import specs_from_frames, ChunkedEncoder, IterativeDecoder
frames = iter([[1.1,2.2],[3.3,4.4]])
frames, specs = specs_from_frames(frames)
encoder = ChunkedEncoder(frame_to_chk = specs.frame_to_chk)
decoder = ChunkedDecoder(chk_to_frame=specs.chk_to_frame)
b = encoder(frames)
decoded_frames = list(decoder(b))
assert decoded_frames == [(1.1,2.2),(3.3,4.4)]
More
Example of recode functionality to read and write audio files
In the below example we can see that the functionality of reading and writing audio to bytes is replicated in recode
.
An example of a waveform audio file is first created using mk_wf
.
Then, that example wave form is converted to bytes using BytesIO
and soundfile.write
.
Then, that same example wave form is converted to bytes using recode
functionality.
Finally it can be seen through the assertions that soundfile
's read/write and recode
's encode/decode provide
the same functionality for audio files (aside from the header in soundfile
as a result of the .wav format).
import soundfile as sf
from io import BytesIO
from enum import Enum
import numpy as np
from recode import ChunkedDecoder, ChunkToFrame, ChunkedEncoder, StructCodecSpecs
class Kind(Enum):
random = 'random'
increasing = 'increasing'
def mk_wf(n_samples=2048, kind: Kind=Kind.random, **kwargs):
if kind == Kind.random:
dtype_str = kwargs.get('num_type', 'int16')
if dtype_str.startswith('int'):
low = kwargs.get('low', int(-2**15))
high = kwargs.get('high', int(2**15-1))
wf = np.random.randint(low=low, high=high, size=n_samples, dtype=dtype_str)
else:
raise TypeError("Don't know how to handle this case")
else:
raise TypeError("Don't know how to handle this case")
return wf
wf = mk_wf(25)
sr = 10000
file = BytesIO()
sf.write(file, wf, sr, format = 'WAV')
file.seek(0)
b = file.read()
specs = StructCodecSpecs('h')
encoder = ChunkedEncoder(frame_to_chk=specs.frame_to_chk)
decoder = ChunkedDecoder(chk_size_bytes=specs.chk_size_bytes,
chk_to_frame=specs.chk_to_frame,
n_channels=specs.n_channels)
d = encoder(wf)
assert d == b[44:]
sf_read = sf.read(BytesIO(b), dtype='int16')
recode_read = decoder(d)
assert np.all(sf_read[0] == recode_read)
assert np.all(recode_read == wf)
assert np.all(sf_read[0] == wf)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file recode-0.1.31.tar.gz
.
File metadata
- Download URL: recode-0.1.31.tar.gz
- Upload date:
- Size: 24.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 772e9662086d45ad10dbdc2226f28bef168f5b3c808fbe142d697363123ba57a |
|
MD5 | 180b5f811e2bc719f600387b3bf2149f |
|
BLAKE2b-256 | 2dfc81c406917d34e05fe7d572739e851d614b1b055fdf4edba293faaac34a58 |