Skip to main content

Open-AI gym reinforcement learning environment for recommendation

Project description

RecoGym

Python code for the RecSys 2018 REVEAL workshop paper entitled 'RecoGym: A Reinforcement Learning Environment for the problem of Product Recommendation in Online Advertising'. A pre-print version of the paper can be found here - https://arxiv.org/abs/1808.00720

RecoGym is a Open-AI gym RL environment for recommendation, which is defined by a model of user traffic patterns on e-commerce and the users response to recommendations on the publisher websites. We hope that RecoGym will be an important step forward for the field of recommendation systems research, that could open up an avenue of collaboration between the recommender systems and reinforcement learning communities and lead to better alignment between offline and online performance metrics.

For getting starting with RecoGym please view the 'Getting Started' Jupyter Notebook which will explain the functionality of the environment and detail the creation of a simple agent. The 'Compare Agent' notebook compares the recommendation performance of a selection of our included agents. The agent we include with RecoGym can be found in the agents directory of this repository.

Dependencies and Requirements

The code has been designed to support python 3.6+ only. The project has the following dependencies and version requirements:

  • MarkupSafe==1.1.1
  • Send2Trash==1.5.0
  • appnope==0.1.0
  • attrs==19.2.0
  • backcall==0.1.0
  • bleach==3.1.0
  • cloudpickle==1.2.2
  • cycler==0.10.0
  • datetime==4.3
  • decorator==4.4.0
  • defusedxml==0.6.0
  • entrypoints==0.3
  • future==0.17.1
  • gym==0.14.0
  • icc==rt-2019.0
  • intel==numpy-1.15.1
  • intel==openmp-2019.0
  • intel==scipy-1.1.0
  • ipykernel==5.1.2
  • ipython==7.8.0
  • ipython==genutils-0.2.0
  • ipywidgets==7.5.1
  • jedi==0.15.1
  • jinja2==2.10.3
  • joblib==0.14.0
  • jsonschema==3.0.2
  • jupyter==1.0.0
  • jupyter==client-5.3.3
  • jupyter==console-6.0.0
  • jupyter==core-4.5.0
  • kiwisolver==1.1.0
  • llvmlite==0.29.0
  • matplotlib==3.1.1
  • mistune==0.8.4
  • mkl==2019.0
  • mkl-fft==1.0.6
  • mkl-random==1.0.1.1
  • nbconvert==5.6.0
  • nbformat==4.4.0
  • notebook==6.0.1
  • numba==0.45.1
  • numpy==1.17.2
  • pandas==0.25.1
  • pandocfilters==1.4.2
  • parso==0.5.1
  • pexpect==4.7.0
  • pickleshare==0.7.5
  • prometheus==client-0.7.1
  • prompt==toolkit-2.0.10
  • ptyprocess==0.6.0
  • pyglet==1.3.2
  • pygments==2.4.2
  • pyparsing==2.4.2
  • pyrsistent==0.15.4
  • python==dateutil-2.8.0
  • pytz==2019.2
  • pyzmq==18.1.0
  • qtconsole==4.5.5
  • recogym==0.1.2.3
  • scikit==learn-0.21.3
  • scipy==1.3.1
  • simplegeneric==0.8.1
  • six==1.12.0
  • tbb==2019.0
  • tbb4py==2019.0
  • terminado==0.8.2
  • testpath==0.4.2
  • torch==1.2.0
  • tornado==6.0.3
  • tqdm==4.36.1
  • traitlets==4.3.3
  • wcwidth==0.1.7
  • webencodings==0.5.1
  • widgetsnbextension==3.5.1
  • zope.interface==4.6.0

In this repository we provide a Anaconda environment setup file with all the required python packages and versions all ready configured. You can install it as follows:

# install conda env
conda create -n reco-gym python=3.6
conda activate reco-gym

pip install recogym==0.1.2.3

For MacOS users, you shall also install libomp:

brew install libomp

Cite

Please cite the associated paper for this work if you use this code:

@article{rohde2018recogym,
  title={RecoGym: A Reinforcement Learning Environment for the problem of Product Recommendation in Online Advertising},
  author={Rohde, David and Bonner, Stephen and Dunlop, Travis and Vasile, Flavian and Karatzoglou, Alexandros},
  journal={arXiv preprint arXiv:1808.00720},
  year={2018}
}

License

Copyright CRITEO

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

recogym-0.1.3.0.tar.gz (43.0 kB view details)

Uploaded Source

Built Distribution

recogym-0.1.3.0-py3-none-any.whl (58.4 kB view details)

Uploaded Python 3

File details

Details for the file recogym-0.1.3.0.tar.gz.

File metadata

  • Download URL: recogym-0.1.3.0.tar.gz
  • Upload date:
  • Size: 43.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for recogym-0.1.3.0.tar.gz
Algorithm Hash digest
SHA256 8a9ecae32c6ce7cc135c5d5f65f47228a2a93f26a2b35220c27c96e6f60f117d
MD5 8cfd82acd4faba77454120603c2ec95a
BLAKE2b-256 a89b4aba2286c3c1d83d9c63590571123964f73383f51058f880eedee496884c

See more details on using hashes here.

File details

Details for the file recogym-0.1.3.0-py3-none-any.whl.

File metadata

  • Download URL: recogym-0.1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 58.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for recogym-0.1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 210530bd0a81989b78176944142b4bcea3b4d4997248c2e5d916f03d31f29880
MD5 1d0ec35877746d186d6ea8705b53889e
BLAKE2b-256 25d118bc332726ca043508ad13266bc3709265cffdc6dba016bd592f7a48ba67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page