Movie recommendation engine.
Project description
===============================
Recommendr
===============================
.. image:: https://badge.fury.io/py/recommendr.png
:target: http://badge.fury.io/py/recommendr
.. image:: https://travis-ci.org/chrislawlor/recommendr.png?branch=master
:target: https://travis-ci.org/chrislawlor/recommendr
.. image:: https://pypip.in/d/recommendr/badge.png
:target: https://crate.io/packages/recommendr?version=latest
Movie recommendation engine.
* Free software: BSD license
* Documentation: http://recommendr.rtfd.org.
Features
--------
* A Redis backend for storing movie and rating data.
* A simple user-based recommendations algorithm with swappable distance
functions.
* Item-based recommendation algorithm in work.
* A demo command-line client.
Try it Out
----------
* Clone the repo::
git clone git@github.com:chrislawlor/recommendr.git
* Create a python virtual environment with virtualenvwrapper::
mkvirtualenv recommendr
* Install requirements::
pip install -r requirements.txt
* Install recommendr::
python setup.py install
* First, import some MovieLens data into Redis::
python data/import_data.py
* Run the demo program::
python demo.py
The demo program will ask you for ratings until you have rated 5 movies, then
it will give some recommendations. Recommendations should improve the more
times you run the demo program.
*NOTE*: If your Redis instance is somewhere other than ``locahost:6379``, set
the ``REDIS_HOST`` and ``REDIS_PORT`` environment variables. If you wish to use
a Redis DB other than 1, set ``REDIS_DB``.
Key Code Points
---------------
``recommendr.db``: Implements a Redis DB backend suitable for storing movie
and rating information
::
recommendr.get_user_based_recommendations(reviewer_id, num=20, similarity=sim_distance)
returns the top recommendations for a given user. It defaults to using
Euclidean distance for the similiarity function, optionally pass
``recommendr.similarity.sim_pearson`` to use the Pearson Coefficient.
Test Suite
----------
I haz one:
::
python setup.py test
History
-------
0.0.1a (2013-08-27)
++++++++++++++++++
* First release on PyPI.
Recommendr
===============================
.. image:: https://badge.fury.io/py/recommendr.png
:target: http://badge.fury.io/py/recommendr
.. image:: https://travis-ci.org/chrislawlor/recommendr.png?branch=master
:target: https://travis-ci.org/chrislawlor/recommendr
.. image:: https://pypip.in/d/recommendr/badge.png
:target: https://crate.io/packages/recommendr?version=latest
Movie recommendation engine.
* Free software: BSD license
* Documentation: http://recommendr.rtfd.org.
Features
--------
* A Redis backend for storing movie and rating data.
* A simple user-based recommendations algorithm with swappable distance
functions.
* Item-based recommendation algorithm in work.
* A demo command-line client.
Try it Out
----------
* Clone the repo::
git clone git@github.com:chrislawlor/recommendr.git
* Create a python virtual environment with virtualenvwrapper::
mkvirtualenv recommendr
* Install requirements::
pip install -r requirements.txt
* Install recommendr::
python setup.py install
* First, import some MovieLens data into Redis::
python data/import_data.py
* Run the demo program::
python demo.py
The demo program will ask you for ratings until you have rated 5 movies, then
it will give some recommendations. Recommendations should improve the more
times you run the demo program.
*NOTE*: If your Redis instance is somewhere other than ``locahost:6379``, set
the ``REDIS_HOST`` and ``REDIS_PORT`` environment variables. If you wish to use
a Redis DB other than 1, set ``REDIS_DB``.
Key Code Points
---------------
``recommendr.db``: Implements a Redis DB backend suitable for storing movie
and rating information
::
recommendr.get_user_based_recommendations(reviewer_id, num=20, similarity=sim_distance)
returns the top recommendations for a given user. It defaults to using
Euclidean distance for the similiarity function, optionally pass
``recommendr.similarity.sim_pearson`` to use the Pearson Coefficient.
Test Suite
----------
I haz one:
::
python setup.py test
History
-------
0.0.1a (2013-08-27)
++++++++++++++++++
* First release on PyPI.