This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
===============================
Recommendr
===============================

.. image:: https://badge.fury.io/py/recommendr.png
:target: http://badge.fury.io/py/recommendr

.. image:: https://travis-ci.org/chrislawlor/recommendr.png?branch=master
:target: https://travis-ci.org/chrislawlor/recommendr

.. image:: https://pypip.in/d/recommendr/badge.png
:target: https://crate.io/packages/recommendr?version=latest


Movie recommendation engine.

* Free software: BSD license
* Documentation: http://recommendr.rtfd.org.

Features
--------

* A Redis backend for storing movie and rating data.

* A simple user-based recommendations algorithm with swappable distance
functions.

* Item-based recommendation algorithm in work.

* A demo command-line client.


Try it Out
----------

* Clone the repo::

git clone git@github.com:chrislawlor/recommendr.git

* Create a python virtual environment with virtualenvwrapper::

mkvirtualenv recommendr

* Install requirements::

pip install -r requirements.txt

* Install recommendr::

python setup.py install

* First, import some MovieLens data into Redis::

python data/import_data.py

* Run the demo program::

python demo.py


The demo program will ask you for ratings until you have rated 5 movies, then
it will give some recommendations. Recommendations should improve the more
times you run the demo program.


*NOTE*: If your Redis instance is somewhere other than ``locahost:6379``, set
the ``REDIS_HOST`` and ``REDIS_PORT`` environment variables. If you wish to use
a Redis DB other than 1, set ``REDIS_DB``.


Key Code Points
---------------

``recommendr.db``: Implements a Redis DB backend suitable for storing movie
and rating information

::

recommendr.get_user_based_recommendations(reviewer_id, num=20, similarity=sim_distance)

returns the top recommendations for a given user. It defaults to using
Euclidean distance for the similiarity function, optionally pass
``recommendr.similarity.sim_pearson`` to use the Pearson Coefficient.


Test Suite
----------

I haz one:

::

python setup.py test




History
-------

0.0.1a (2013-08-27)
++++++++++++++++++

* First release on PyPI.
Release History

Release History

0.0.1a

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting