Skip to main content

Movie recommendation engine.

Project description

===============================
Recommendr
===============================

.. image:: https://badge.fury.io/py/recommendr.png
:target: http://badge.fury.io/py/recommendr

.. image:: https://travis-ci.org/chrislawlor/recommendr.png?branch=master
:target: https://travis-ci.org/chrislawlor/recommendr

.. image:: https://pypip.in/d/recommendr/badge.png
:target: https://crate.io/packages/recommendr?version=latest


Movie recommendation engine.

* Free software: BSD license
* Documentation: http://recommendr.rtfd.org.

Features
--------

* A Redis backend for storing movie and rating data.

* A simple user-based recommendations algorithm with swappable distance
functions.

* Item-based recommendation algorithm in work.

* A demo command-line client.


Try it Out
----------

* Clone the repo::

git clone git@github.com:chrislawlor/recommendr.git

* Create a python virtual environment with virtualenvwrapper::

mkvirtualenv recommendr

* Install requirements::

pip install -r requirements.txt

* Install recommendr::

python setup.py install

* First, import some MovieLens data into Redis::

python data/import_data.py

* Run the demo program::

python demo.py


The demo program will ask you for ratings until you have rated 5 movies, then
it will give some recommendations. Recommendations should improve the more
times you run the demo program.


*NOTE*: If your Redis instance is somewhere other than ``locahost:6379``, set
the ``REDIS_HOST`` and ``REDIS_PORT`` environment variables. If you wish to use
a Redis DB other than 1, set ``REDIS_DB``.


Key Code Points
---------------

``recommendr.db``: Implements a Redis DB backend suitable for storing movie
and rating information

::

recommendr.get_user_based_recommendations(reviewer_id, num=20, similarity=sim_distance)

returns the top recommendations for a given user. It defaults to using
Euclidean distance for the similiarity function, optionally pass
``recommendr.similarity.sim_pearson`` to use the Pearson Coefficient.


Test Suite
----------

I haz one:

::

python setup.py test




History
-------

0.0.1a (2013-08-27)
++++++++++++++++++

* First release on PyPI.

Project details


Release history Release notifications

This version
History Node

0.0.1a

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page