Skip to main content


Project description

PyPI Pandas Version PyPI - Python Version

redframes (rectangular data frames) is a data manipulation library for ML and visualization. It is fully interoperable with pandas, compatible with scikit-learn, and works great with matplotlib!

redframes prioritizes syntax over flexibility and scope. And minimizes the number-of-googles-per-lines-of-code™ so that you can focus on the work that matters most.

"What is redframes?" would be the answer to the Jeopardy! clue "A pythonic dplyr".

Install & Import

pip install redframes
import redframes as rf


Copy-and-paste this:

import redframes as rf

df = rf.DataFrame({
    "foo": ["A", "A", "B", None, "B", "A", "A", "C"],
    "bar": [1, 4, 2, -4, 5, 6, 6, -2], 
    "baz": [0.99, None, 0.25, 0.75, 0.66, 0.47, 0.48, None]

# ['A', 'A', 'B', None, 'B', 'A', 'A', 'C']
# ['foo', 'bar', 'baz']
# {'rows': 8, 'columns': 3}
# False
# {'foo': str, 'bar': int, 'baz': float}

    .mutate({"bar100": lambda row: row["bar"] * 100})
    .select(["foo", "baz", "bar100"])
    .filter(lambda row: 
        (row["foo"].isin(["A", "B"])) & (row["bar100"] > 0)
        "bar_mean": ("bar100", rf.stat.mean), 
        "baz_sum": ("baz", rf.stat.sum)
    .gather(["bar_mean", "baz_sum"])


Save, load, and convert rf.DataFrame objects:

import redframes as rf
import pandas as pd

df = rf.DataFrame({"foo": [1, 2], "bar": ["A", "B"]})

# save/load, "example.csv")
df = rf.load("example.csv")

# to/from pandas
pandf = rf.unwrap(df)
reddf = rf.wrap(pandf)


There are 23 core "verbs" that make up rf.DataFrame objects. Each verb is pure, "chain-able", and has an analog in pandas/dplyr (see docstrings for more info/examples):

pandas dplyr
.accumulate cumsum mutate(... = cumsum(...))
.append concat bind_rows
.combine + unite
.dedupe drop_duplicates distinct
.denix dropna drop_na
.drop drop(..., axis=1) select(- ...)
.fill fillna fill, replace_na
.filter df[df[col] == condition] filter
.gather melt gather, pivot_longer
.group groupby group_by
.join merge *_join
.mutate apply, astype mutate
.rank rank("dense") dense_rank
.rename rename rename
.replace replace mutate(... = case_when(...))
.sample sample(n, frac) sample_n, sample_frac
.select select select
.shuffle sample(frac=1) sample_frac(..., 1)
.sort sort_values arrange
.split df[col].str.split() separate
.spread pivot_table spread, pivot_wider
.summarise agg summarise
.take head, tail slice_head, slice_tail


rf.DataFrame objects integrate seamlessly with matplotlib:

import redframes as rf
import matplotlib.pyplot as plt

df = rf.DataFrame({
    'position': ['TE', 'K', 'RB', 'WR', 'QB'],
    'avp': [116.98, 131.15, 180, 222.22, 272.91]

df = (
    .mutate({"color": lambda row: row["position"] in ["WR", "RB"]})
    .replace({"color": {False: "orange", True: "red"}})

plt.barh(df["position"], df["avp"], color=df["color"]);


rf.DataFrame objects are fully compatible with sklearn functions, estimators, and transformers:

import redframes as rf
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

df = rf.DataFrame({
    "touchdowns": [15, 19, 5, 7, 9, 10, 12, 22, 16, 10],
    "age": [21, 22, 21, 24, 26, 28, 30, 35, 28, 21],
    "mvp": [1, 1, 0, 0, 0, 0, 0, 1, 0, 0]

target = "touchdowns"
y = df[target]
X = df.drop(target)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

model = LinearRegression(), y_train)
model.score(X_test, y_test)
# 0.5083194901655527

# rf.DataFrame({'age': [21], 'mvp': [0]})

X_new = rf.DataFrame({'age': [22], 'mvp': [1]})
# array([19.])

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

redframes-1.0.tar.gz (24.0 kB view hashes)

Uploaded Source

Built Distribution

redframes-1.0-py3-none-any.whl (34.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page