Skip to main content

[re]ctangular[d]ata[frames]

Project description

redframes
PyPI PyPI - Python Version Pandas Version

redframes (rectangular data frames) is a data manipulation library for ML and visualization. It is fully interoperable with pandas, compatible with scikit-learn, and works great with matplotlib!

redframes prioritizes syntax over flexibility and scope. And minimizes the number-of-googles-per-lines-of-code™ so that you can focus on the work that matters most.

"What is redframes?" would be the answer to the Jeopardy! clue "A pythonic dplyr".

Install & Import

pip install redframes
import redframes as rf

Quickstart

Copy-and-paste this:

import redframes as rf

df = rf.DataFrame({
    "foo": ["A", "A", "B", None, "B", "A", "A", "C"],
    "bar": [1, 4, 2, -4, 5, 6, 6, -2], 
    "baz": [0.99, None, 0.25, 0.75, 0.66, 0.47, 0.48, None]
})

# | foo   |   bar |    baz |
# |:------|------:|-------:|
# | A     |     1 |   0.99 |
# | A     |     4 |        |
# | B     |     2 |   0.25 |
# |       |    -4 |   0.75 |
# | B     |     5 |   0.66 |
# | A     |     6 |   0.47 |
# | A     |     6 |   0.48 |
# | C     |    -2 |        |

(
    df
    .mutate({"bar100": lambda row: row["bar"] * 100})
    .select(["foo", "baz", "bar100"])
    .filter(lambda row: (row["foo"].isin(["A", "B"])) & (row["bar100"] > 0))
    .denix("baz")
    .group("foo")
    .rollup({
        "bar_mean": ("bar100", rf.stat.mean), 
        "baz_sum": ("baz", rf.stat.sum)
    })
    .gather(["bar_mean", "baz_sum"], into=("variable", "value"))
    .sort("value")
)

# | foo   | variable   |   value |
# |:------|:-----------|--------:|
# | B     | baz_sum    |   0.91  |
# | A     | baz_sum    |   1.94  |
# | B     | bar_mean   | 350     |
# | A     | bar_mean   | 433.333 |

IO

Save, load, and convert rf.DataFrame objects:

import redframes as rf
import pandas as pd

df = rf.DataFrame({"foo": [1, 2], "bar": ["A", "B"]})

# save/load
rf.save(df, "example.csv")
df = rf.load("example.csv")

# to/from pandas
pandf = rf.unwrap(df)
reddf = rf.wrap(pandf)

Verbs

There are 24 core "verbs" that make up rf.DataFrame objects. Each verb is pure, "chain-able", and has an analog in pandas/tidyverse (see docstrings for more info/examples):

pandas tidyverse
.accumulate cumsum mutate(... = cumsum(...))
.append concat bind_rows
.combine + unite
.cross merge(..., how="cross") full_join(..., by = character())
.dedupe drop_duplicates distinct
.denix dropna drop_na
.drop drop(..., axis=1) select(-...)
.fill fillna fill, replace_na
.filter df[df[col] == condition] filter
.gather melt gather, pivot_longer
.group groupby group_by
.join merge *_join
.mutate apply, astype mutate
.rank rank("dense") dense_rank
.rename rename rename
.replace replace mutate(... = case_when(...))
.rollup agg summarize
.sample sample(n, frac) sample_n, sample_frac
.select select select
.shuffle sample(frac=1) sample_frac(..., 1)
.sort sort_values arrange
.split df[col].str.split() separate
.spread pivot_table spread, pivot_wider
.take head, tail slice_head, slice_tail

Properties

In addition to all of the verbs there are several properties attached to each DataFrame:

df["foo"] 
# ['A', 'A', 'B', None, 'B', 'A', 'A', 'C']

df.columns 
# ['foo', 'bar', 'baz']

df.dimensions
# {'rows': 8, 'columns': 3}

df.empty
# False

df.memory
# '686 B'

df.types
# {'foo': object, 'bar': int, 'baz': float}

matplotlib

rf.DataFrame objects integrate seamlessly with matplotlib:

import redframes as rf
import matplotlib.pyplot as plt

df = rf.DataFrame({
    'position': ['TE', 'K', 'RB', 'WR', 'QB'],
    'avp': [116.98, 131.15, 180, 222.22, 272.91]
})

df = (
    df
    .mutate({"color": lambda row: row["position"] in ["WR", "RB"]})
    .replace({"color": {False: "orange", True: "red"}})
)

plt.barh(df["position"], df["avp"], color=df["color"]);
redframes

scikit-learn

rf.DataFrame objects are fully compatible with sklearn functions, estimators, and transformers:

import redframes as rf
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

df = rf.DataFrame({
    "touchdowns": [15, 19, 5, 7, 9, 10, 12, 22, 16, 10],
    "age": [21, 22, 21, 24, 26, 28, 30, 35, 28, 21],
    "mvp": [1, 1, 0, 0, 0, 0, 0, 1, 0, 0]
})

target = "touchdowns"
y = df[target]
X = df.drop(target)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

model = LinearRegression()
model.fit(X_train, y_train)
model.score(X_test, y_test)
# 0.5083194901655527

print(X_train.take(1))
# rf.DataFrame({'age': [21], 'mvp': [0]})

X_new = rf.DataFrame({'age': [22], 'mvp': [1]})
model.predict(X_new)
# array([19.])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

redframes-1.2.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

redframes-1.2-py3-none-any.whl (37.0 kB view details)

Uploaded Python 3

File details

Details for the file redframes-1.2.tar.gz.

File metadata

  • Download URL: redframes-1.2.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for redframes-1.2.tar.gz
Algorithm Hash digest
SHA256 1bed6408426bfae5d7e995d178f7f7b2ea172a3ca0e369facfb37d498bfc033d
MD5 3450f2ce6ef1c7c5c4a34b009235ca62
BLAKE2b-256 65472c2e4a301bea63903bf5e282a9c51f2bdbb343b9c96713e2466c613df98b

See more details on using hashes here.

File details

Details for the file redframes-1.2-py3-none-any.whl.

File metadata

  • Download URL: redframes-1.2-py3-none-any.whl
  • Upload date:
  • Size: 37.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for redframes-1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 32ea4ec7c03554a42a1387599198ad9614c253a8293bc5b546133e3e8e4b04e9
MD5 9878d78f1b02e0c6e0ec133d3349e8c6
BLAKE2b-256 d2db0d1be60382150899d5918ab1e13e17d416629c190ccc6d42e07292e74d5c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page