Skip to main content

高并发reids队列,分布式爬虫利器(High concurrency RedisQueue,Distributed crawler weapon)

Project description

中文文档 | English Docs

redis高并发队列

功能描述

  • 比scrapy更灵活,比celery更容易上手的分布式爬虫框架。用最少的代码,用最简单的方式,做最多的事情
  • 1分钟内能熟练运用该框架爬取数据,无需学习复杂文档.轻松扩展各种中间件

特色说明:

 支持中间件:
    支持reids kafka sqlite memory 四种中间件(首推redis,支持批量发布任务,分布式消费快如闪电)

 并发支持:
    支持process threading gevent三种并发消费模式(可混合使用)

 控频限流:
    精确控制1秒钟运行多少次函数

 任务去重:
    如果重复推送消费成功的任务,自动过滤掉该任务

 消费确认:
    启用消费确认,消费任务宕机手动终止情况,任务不会丢失

 重试次数:
    当函数运行出错,会立即重试指定的次数,达到最大次重试数后就确认消费了

 任务可视化:
    可以通过redis web版管理工具实时查看当前任务消费情况                  

版本说明

  • 支持版本: python 3.0+

pip安装

pip install redis-queue-tool

DEMO说明

0.发布任务和消费任务(装饰器版)
from redis_queue_tool import task_deco

@task_deco('test0')  # 消费函数上新增任务队列装饰器
def f0(a, b):
    print(f"t_demo0,a:{a},b:{b}")

# 发布任务
for i in range(1, 51):
    f0.pub(i, i)

# 消费任务
f0.start()
1.发布消费任务(额外参数)
from redis_queue_tool import task_deco

@task_deco('test1', qps=30, threads_num=30, max_retry_times=3, ack=True)
def f1(a, b):
    print(f"t_demo1,a:{a},b:{b}")

# 发布任务
for i in range(1, 31):
    f1.pub(i, i + 1)  # 或者 f1.publish_redispy(i,i+1)

# 消费任务
f1.start()
2.发布消费任务(非装饰器版)
from redis_queue_tool import RedisPublish, RedisCustomer


for zz in range(1, 501):
    param = {"a": zz, "b": zz, "c": zz}
    RedisPublish(queue_name='test2').publish_redispy(param)


def print_msg_dict(a, b, c):
    print(f"msg_dict:{a},{b},{c}")


# 消费多参数类型任务 queue_name消费队列名称 qps每秒消费任务数(默认没有限制)
RedisCustomer(queue_name='test2', consuming_function=print_msg_dict,
              qps=50).start_consuming_message()
3.批量提交任务(使用协程消费)
from redis_queue_tool import task_deco
from gevent import monkey
monkey.patch_all()

# #### 3.批量提交任务
result = [{'a': i, 'b': i, 'c': i} for i in range(1, 51)]

# customer_type 消费者类型(默认thread),max_push_size每次批量提交记录数(默认值50)
# 若使用gevent请在代码开头加入:from gevent import monkey monkey.patch_all()
@task_deco('test3', qps=50, customer_type='gevent', max_push_size=100)  # 消费函数上新增任务队列装饰器
def f3(a, b, c):
    print(f"t_demo3:{a},{b},{c}")

# 发布任务
f3.pub_list(result)

# 消费任务
f3.start()
4.切换任务队列中间件为sqlite(默认为redis)
from redis_queue_tool import task_deco, MiddlewareEum

@task_deco('test4', middleware=MiddlewareEum.SQLITE, qps=10)
def f4(a, b, c):
    print(f"t_demo4:{a},{b},{c}")

for zz in range(1, 51):
    f4.pub(zz, zz, zz)

f4.start()

reids安装

reids 普通安装

reids docker安装

docker run  -d -p 6379:6379 redis

redis web版管理工具 redisweb avatar

特色说明

1 . 高并发分布式爬虫(经过线上千万级数据爬取验证)

2 . 分布式数据清洗(清洗自动去重,支持任意时刻中断后继续清洗)

3 . 短视频处理(视频下载上传,带宽足够无需等待)

4 . 异步实时在线查询接口(速度达到毫秒级别)

5 . 其它使用场景扩展中

更新说明

2020-06-11 版本4.1.5 新增支持gevent协程消费参数 customer_type='gevent'

2020-05-20 新增消费函数超时时间参数

2020-05-10 新增sqlite中间件支持

2020-04-13 消费函数新增自动控制线程数

2020-04-10 消费函数新增限频参数

2020-01-08 消费函数支持多参数类型

2019-12-06 简化多线程消费队列类

2019-10-14 新增消费函数错误重试机制,默认重试3次

2019-10-12 任务去重忽略参数顺序

2019-09-27 修复提交列表任务BUG

2019-05-25 新增添加任务时动态传参

2019-04-06 新增爬取任务自动去重功能

2019-03-23 新增单线程异步批量提交功能

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for redis-queue-tool, version 4.6.3
Filename, size File type Python version Upload date Hashes
Filename, size redis_queue_tool-4.6.3-py3-none-any.whl (23.0 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size redis-queue-tool-4.6.3.tar.gz (16.7 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page