A collection of regression datasets
Project description
RegData
A collection of regression datasets.
Install
pip install regdata
Quick example
import regdata as rd
rd.set_backend('torch') # numpy, tf (numpy is default)
X, y, X_test = rd.Step().get_data() # Loads step function dataset
Features
- Simple API for quick benchmarking on various datasets.
- Get data in any framework:
torch
,tensorflow
ornumpy
by setting a global backend. - Scale
X
and/ory
data withMinMaxScaler
orStandardScaler
. - Get
y
in squeezed(n,)
or unsqueezed(n,1)
format. - Perform only mean normalization on
y
. - Add custom noise to the observations (
y
). - Get consistent data with fixed random seed.
Plot datasets to have a quick glance
import regdata as rd
rd.Olympic().plot()
Checkout all plots here.
Datasets
from regdata import (
DellaGattaGene,
Heinonen4,
Jump1D,
MotorcycleHelmet,
NonStat2D,
Olympic,
SineJump1D,
SineNoisy,
Smooth1D,
Step
)
References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
regdata-1.0.4.tar.gz
(431.7 kB
view details)
File details
Details for the file regdata-1.0.4.tar.gz
.
File metadata
- Download URL: regdata-1.0.4.tar.gz
- Upload date:
- Size: 431.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 939d390b7f861e6fd3f6a64334e77913675047e2953175f5957213a9bdfd500b |
|
MD5 | 05a3bd187e5099e595e18371b635dcf5 |
|
BLAKE2b-256 | e460b415aea9984585216f3e416885105bd9cb8b1e26a7385ed67361cbe6d746 |