Skip to main content

Alternative regular expression module, to replace re.

Project description

Introduction

This new regex implementation is intended eventually to replace Python’s current re module implementation.

For testing and comparison with the current ‘re’ module the new implementation is in the form of a module called ‘regex’.

Old vs new behaviour

This module has 2 behaviours:

  • Version 0 behaviour (old behaviour, compatible with the current re module):

    • Indicated by the VERSION0 or V0 flag, or (?V0) in the pattern.

    • Zero-width matches are handled like in the re module:

      • .split won’t split a string at a zero-width match.

      • .sub will advance by one character after a zero-width match.

    • Inline flags apply to the entire pattern, and they can’t be turned off.

    • Only simple sets are supported.

    • Case-insensitive matches in Unicode use simple case-folding by default.

  • Version 1 behaviour (new behaviour, different from the current re module):

    • Indicated by the VERSION1 or V1 flag, or (?V1) in the pattern.

    • Zero-width matches are handled like in Perl and PCRE:

      • .split will split a string at a zero-width match.

      • .sub will handle zero-width matches correctly.

    • Inline flags apply to the end of the group or pattern, and they can be turned off.

    • Nested sets and set operations are supported.

    • Case-insensitive matches in Unicode use full case-folding by default.

If no version is specified, the regex module will default to regex.DEFAULT_VERSION. In the short term this will be VERSION0, but in the longer term it will be VERSION1.

Case-insensitive matches in Unicode

The regex module supports both simple and full case-folding for case-insensitive matches in Unicode. Use of full case-folding can be turned on using the FULLCASE or F flag, or (?f) in the pattern. Please note that this flag affects how the IGNORECASE flag works; the FULLCASE flag itself does not turn on case-insensitive matching.

In the version 0 behaviour, the flag is off by default.

In the version 1 behaviour, the flag is on by default.

Nested sets and set operations

It’s not possible to support both simple sets, as used in the re module, and nested sets at the same time because of a difference in the meaning of an unescaped "[" in a set.

For example, the pattern [[a-z]--[aeiou]] is treated in the version 0 behaviour (simple sets, compatible with the re module) as:

  • Set containing “[” and the letters “a” to “z”

  • Literal “–”

  • Set containing letters “a”, “e”, “i”, “o”, “u”

but in the version 1 behaviour (nested sets, enhanced behaviour) as:

  • Set which is:

    • Set containing the letters “a” to “z”

  • but excluding:

    • Set containing the letters “a”, “e”, “i”, “o”, “u”

Version 0 behaviour: only simple sets are supported.

Version 1 behaviour: nested sets and set operations are supported.

Flags

There are 2 kinds of flag: scoped and global. Scoped flags can apply to only part of a pattern and can be turned on or off; global flags apply to the entire pattern and can only be turned on.

The scoped flags are: FULLCASE, IGNORECASE, MULTILINE, DOTALL, VERBOSE, WORD.

The global flags are: ASCII, BESTMATCH, ENHANCEMATCH, LOCALE, POSIX, REVERSE, UNICODE, VERSION0, VERSION1.

If neither the ASCII, LOCALE nor UNICODE flag is specified, it will default to UNICODE if the regex pattern is a Unicode string and ASCII if it’s a bytestring.

The ENHANCEMATCH flag makes fuzzy matching attempt to improve the fit of the next match that it finds.

The BESTMATCH flag makes fuzzy matching search for the best match instead of the next match.

Notes on named capture groups

All capture groups have a group number, starting from 1.

Groups with the same group name will have the same group number, and groups with a different group name will have a different group number.

The same name can be used by more than one group, with later captures ‘overwriting’ earlier captures. All of the captures of the group will be available from the captures method of the match object.

Group numbers will be reused across different branches of a branch reset, eg. (?|(first)|(second)) has only group 1. If capture groups have different group names then they will, of course, have different group numbers, eg. (?|(?P<foo>first)|(?P<bar>second)) has group 1 (“foo”) and group 2 (“bar”).

In the regex (\s+)(?|(?P<foo>[A-Z]+)|(\w+) (?P<foo>[0-9]+) there are 2 groups:

  • (\s+) is group 1.

  • (?P<foo>[A-Z]+) is group 2, also called “foo”.

  • (\w+) is group 2 because of the branch reset.

  • (?P<foo>[0-9]+) is group 2 because it’s called “foo”.

If you want to prevent (\w+) from being group 2, you need to name it (different name, different group number).

Multithreading

The regex module releases the GIL during matching on instances of the built-in (immutable) string classes, enabling other Python threads to run concurrently. It is also possible to force the regex module to release the GIL during matching by calling the matching methods with the keyword argument concurrent=True. The behaviour is undefined if the string changes during matching, so use it only when it is guaranteed that that won’t happen.

Building for 64-bits

If the source files are built for a 64-bit target then the string positions will also be 64-bit.

Unicode

This module supports Unicode 8.0.

Full Unicode case-folding is supported.

Additional features

The issue numbers relate to the Python bug tracker, except where listed as “Hg issue”.

  • Fixed support for pickling compiled regexes (Hg issue 195)

  • Added support for lookaround in conditional pattern (Hg issue 163)

    The test of a conditional pattern can now be a lookaround.

    Examples:

    >>> regex.match(r'(?(?=\d)\d+|\w+)', '123abc')
    <regex.Match object; span=(0, 3), match='123'>
    >>> regex.match(r'(?(?=\d)\d+|\w+)', 'abc123')
    <regex.Match object; span=(0, 6), match='abc123'>

    This is not quite the same as putting a lookaround in the first branch of a pair of alternatives.

    Examples:

    >>> print(regex.match(r'(?:(?=\d)\d+\b|\w+)', '123abc'))
    <regex.Match object; span=(0, 6), match='123abc'>
    >>> print(regex.match(r'(?(?=\d)\d+\b|\w+)', '123abc'))
    None

    In the first example, the lookaround matched, but the remainder of the first branch failed to match, and so the second branch was attempted, whereas in the second example, the lookaround matched, and the first branch failed to match, but the second branch was not attempted.

  • Added POSIX matching (leftmost longest) (Hg issue 150)

    The POSIX standard for regex is to return the leftmost longest match. This can be turned on using the POSIX flag ((?p)).

    Examples:

    >>> # Normal matching.
    >>> regex.search(r'Mr|Mrs', 'Mrs')
    <regex.Match object; span=(0, 2), match='Mr'>
    >>> regex.search(r'one(self)?(selfsufficient)?', 'oneselfsufficient')
    <regex.Match object; span=(0, 7), match='oneself'>
    >>> # POSIX matching.
    >>> regex.search(r'(?p)Mr|Mrs', 'Mrs')
    <regex.Match object; span=(0, 3), match='Mrs'>
    >>> regex.search(r'(?p)one(self)?(selfsufficient)?', 'oneselfsufficient')
    <regex.Match object; span=(0, 17), match='oneselfsufficient'>

    Note that it will take longer to find matches because when it finds a match at a certain position, it won’t return that immediately, but will keep looking to see if there’s another longer match there.

  • Added (?(DEFINE)...) (Hg issue 152)

    If there’s no group called “DEFINE”, then … will be ignored, but any group definitions within it will be available.

    Examples:

    >>> regex.search(r'(?(DEFINE)(?P<quant>\d+)(?P<item>\w+))(?&quant) (?&item)', '5 elephants')
    <regex.Match object; span=(0, 11), match='5 elephants'>
  • Added (*PRUNE), (*SKIP) and (*FAIL) (Hg issue 153)

    (*PRUNE) discards the backtracking info up to that point. When used in an atomic group or a lookaround, it won’t affect the enclosing pattern.

    (*SKIP) is similar to (*PRUNE), except that it also sets where in the text the next attempt to match will start. When used in an atomic group or a lookaround, it won’t affect the enclosing pattern.

    (*FAIL) causes immediate backtracking. (*F) is a permitted abbreviation.

  • Added \K (Hg issue 151)

    Keeps the part of the entire match after the position where \K occurred; the part before it is discarded.

    It does not affect what capture groups return.

    Examples:

    >>> m = regex.search(r'(\w\w\K\w\w\w)', 'abcdef')
    >>> m[0]
    'cde'
    >>> m[1]
    'abcde'
    >>>
    >>> m = regex.search(r'(?r)(\w\w\K\w\w\w)', 'abcdef')
    >>> m[0]
    'bc'
    >>> m[1]
    'bcdef'
  • Added capture subscripting for expandf and subf/subfn (Hg issue 133) (Python 2.6 and above)

    You can now use subscripting to get the captures of a repeated capture group.

    Examples:

    >>> m = regex.match(r"(\w)+", "abc")
    >>> m.expandf("{1}")
    'c'
    >>> m.expandf("{1[0]} {1[1]} {1[2]}")
    'a b c'
    >>> m.expandf("{1[-1]} {1[-2]} {1[-3]}")
    'c b a'
    >>>
    >>> m = regex.match(r"(?P<letter>\w)+", "abc")
    >>> m.expandf("{letter}")
    'c'
    >>> m.expandf("{letter[0]} {letter[1]} {letter[2]}")
    'a b c'
    >>> m.expandf("{letter[-1]} {letter[-2]} {letter[-3]}")
    'c b a'
  • Added support for referring to a group by number using (?P=...).

    This is in addition to the existing \g<...>.

  • Fixed the handling of locale-sensitive regexes.

    The LOCALE flag is intended for legacy code and has limited support. You’re still recommended to use Unicode instead.

  • Added partial matches (Hg issue 102)

    A partial match is one that matches up to the end of string, but that string has been truncated and you want to know whether a complete match could be possible if the string had not been truncated.

    Partial matches are supported by match, search, fullmatch and finditer with the partial keyword argument.

    Match objects have a partial attribute, which is True if it’s a partial match.

    For example, if you wanted a user to enter a 4-digit number and check it character by character as it was being entered:

    >>> pattern = regex.compile(r'\d{4}')
    
    >>> # Initially, nothing has been entered:
    >>> print(pattern.fullmatch('', partial=True))
    <regex.Match object; span=(0, 0), match='', partial=True>
    
    >>> # An empty string is OK, but it's only a partial match.
    >>> # The user enters a letter:
    >>> print(pattern.fullmatch('a', partial=True))
    None
    >>> # It'll never match.
    
    >>> # The user deletes that and enters a digit:
    >>> print(pattern.fullmatch('1', partial=True))
    <regex.Match object; span=(0, 1), match='1', partial=True>
    >>> # It matches this far, but it's only a partial match.
    
    >>> # The user enters 2 more digits:
    >>> print(pattern.fullmatch('123', partial=True))
    <regex.Match object; span=(0, 3), match='123', partial=True>
    >>> # It matches this far, but it's only a partial match.
    
    >>> # The user enters another digit:
    >>> print(pattern.fullmatch('1234', partial=True))
    <regex.Match object; span=(0, 4), match='1234'>
    >>> # It's a complete match.
    
    >>> # If the user enters another digit:
    >>> print(pattern.fullmatch('12345', partial=True))
    None
    >>> # It's no longer a match.
    
    >>> # This is a partial match:
    >>> pattern.match('123', partial=True).partial
    True
    
    >>> # This is a complete match:
    >>> pattern.match('1233', partial=True).partial
    False
  • * operator not working correctly with sub() (Hg issue 106)

    Sometimes it’s not clear how zero-width matches should be handled. For example, should .* match 0 characters directly after matching >0 characters?

    Most regex implementations follow the lead of Perl (PCRE), but the re module sometimes doesn’t. The Perl behaviour appears to be the most common (and the re module is sometimes definitely wrong), so in version 1 the regex module follows the Perl behaviour, whereas in version 0 it follows the legacy re behaviour.

    Examples:

    >>> # Version 0 behaviour (like re)
    >>> regex.sub('(?V0).*', 'x', 'test')
    'x'
    >>> regex.sub('(?V0).*?', '|', 'test')
    '|t|e|s|t|'
    
    >>> # Version 1 behaviour (like Perl)
    >>> regex.sub('(?V1).*', 'x', 'test')
    'xx'
    >>> regex.sub('(?V1).*?', '|', 'test')
    '|||||||||'
  • re.group() should never return a bytearray (issue #18468)

    For compatibility with the re module, the regex module returns all matching bytestrings as bytes, starting from Python 3.4.

    Examples:

    >>> # Python 3.4 and later
    >>> regex.match(b'.', bytearray(b'a')).group()
    b'a'
    
    >>> # Python 3.1-3.3
    >>> regex.match(b'.', bytearray(b'a')).group()
    bytearray(b'a')
  • Added capturesdict (Hg issue 86)

    capturesdict is a combination of groupdict and captures:

    groupdict returns a dict of the named groups and the last capture of those groups.

    captures returns a list of all the captures of a group

    capturesdict returns a dict of the named groups and lists of all the captures of those groups.

    Examples:

    >>> m = regex.match(r"(?:(?P<word>\w+) (?P<digits>\d+)\n)+", "one 1\ntwo 2\nthree 3\n")
    >>> m.groupdict()
    {'word': 'three', 'digits': '3'}
    >>> m.captures("word")
    ['one', 'two', 'three']
    >>> m.captures("digits")
    ['1', '2', '3']
    >>> m.capturesdict()
    {'word': ['one', 'two', 'three'], 'digits': ['1', '2', '3']}
  • Allow duplicate names of groups (Hg issue 87)

    Group names can now be duplicated.

    Examples:

    >>> # With optional groups:
    >>>
    >>> # Both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", "first or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['first', 'second']
    >>> # Only the second group captures.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", " or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['second']
    >>> # Only the first group captures.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", "first or ")
    >>> m.group("item")
    'first'
    >>> m.captures("item")
    ['first']
    >>>
    >>> # With mandatory groups:
    >>>
    >>> # Both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)?", "first or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['first', 'second']
    >>> # Again, both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)", " or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['', 'second']
    >>> # And yet again, both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)", "first or ")
    >>> m.group("item")
    ''
    >>> m.captures("item")
    ['first', '']
  • Added fullmatch (issue #16203)

    fullmatch behaves like match, except that it must match all of the string.

    Examples:

    >>> print(regex.fullmatch(r"abc", "abc").span())
    (0, 3)
    >>> print(regex.fullmatch(r"abc", "abcx"))
    None
    >>> print(regex.fullmatch(r"abc", "abcx", endpos=3).span())
    (0, 3)
    >>> print(regex.fullmatch(r"abc", "xabcy", pos=1, endpos=4).span())
    (1, 4)
    >>>
    >>> regex.match(r"a.*?", "abcd").group(0)
    'a'
    >>> regex.fullmatch(r"a.*?", "abcd").group(0)
    'abcd'
  • Added subf and subfn (Python 2.6 and above)

    subf and subfn are alternatives to sub and subn respectively. When passed a replacement string, they treat it as a format string.

    Examples:

    >>> regex.subf(r"(\w+) (\w+)", "{0} => {2} {1}", "foo bar")
    'foo bar => bar foo'
    >>> regex.subf(r"(?P<word1>\w+) (?P<word2>\w+)", "{word2} {word1}", "foo bar")
    'bar foo'
  • Added expandf to match object (Python 2.6 and above)

    expandf is an alternative to expand. When passed a replacement string, it treats it as a format string.

    Examples:

    >>> m = regex.match(r"(\w+) (\w+)", "foo bar")
    >>> m.expandf("{0} => {2} {1}")
    'foo bar => bar foo'
    >>>
    >>> m = regex.match(r"(?P<word1>\w+) (?P<word2>\w+)", "foo bar")
    >>> m.expandf("{word2} {word1}")
    'bar foo'
  • Detach searched string

    A match object contains a reference to the string that was searched, via its string attribute. The match object now has a detach_string method that will ‘detach’ that string, making it available for garbage collection (this might save valuable memory if that string is very large).

    Example:

    >>> m = regex.search(r"\w+", "Hello world")
    >>> print(m.group())
    Hello
    >>> print(m.string)
    Hello world
    >>> m.detach_string()
    >>> print(m.group())
    Hello
    >>> print(m.string)
    None
  • Characters in a group name (issue #14462)

    A group name can now contain the same characters as an identifier. These are different in Python 2 and Python 3.

  • Recursive patterns (Hg issue 27)

    Recursive and repeated patterns are supported.

    (?R) or (?0) tries to match the entire regex recursively. (?1), (?2), etc, try to match the relevant capture group.

    (?&name) tries to match the named capture group.

    Examples:

    >>> regex.match(r"(Tarzan|Jane) loves (?1)", "Tarzan loves Jane").groups()
    ('Tarzan',)
    >>> regex.match(r"(Tarzan|Jane) loves (?1)", "Jane loves Tarzan").groups()
    ('Jane',)
    
    >>> m = regex.search(r"(\w)(?:(?R)|(\w?))\1", "kayak")
    >>> m.group(0, 1, 2)
    ('kayak', 'k', None)

    The first two examples show how the subpattern within the capture group is reused, but is _not_ itself a capture group. In other words, "(Tarzan|Jane) loves (?1)" is equivalent to "(Tarzan|Jane) loves (?:Tarzan|Jane)".

    It’s possible to backtrack into a recursed or repeated group.

    You can’t call a group if there is more than one group with that group name or group number ("ambiguous group reference"). For example, (?P<foo>\w+) (?P<foo>\w+) (?&foo)? has 2 groups called “foo” (both group 1) and (?|([A-Z]+)|([0-9]+)) (?1)? has 2 groups with group number 1.

    The alternative forms (?P>name) and (?P&name) are also supported.

  • repr(regex) doesn’t include actual regex (issue #13592)

    The repr of a compiled regex is now in the form of a eval-able string. For example:

    >>> r = regex.compile("foo", regex.I)
    >>> repr(r)
    "regex.Regex('foo', flags=regex.I | regex.V0)"
    >>> r
    regex.Regex('foo', flags=regex.I | regex.V0)

    The regex module has Regex as an alias for the ‘compile’ function.

  • Improve the repr for regular expression match objects (issue #17087)

    The repr of a match object is now a more useful form. For example:

    >>> regex.search(r"\d+", "abc012def")
    <regex.Match object; span=(3, 6), match='012'>
  • Python lib re cannot handle Unicode properly due to narrow/wide bug (issue #12729)

    The source code of the regex module has been updated to support PEP 393 (“Flexible String Representation”), which is new in Python 3.3.

  • Full Unicode case-folding is supported.

    In version 1 behaviour, the regex module uses full case-folding when performing case-insensitive matches in Unicode.

    Examples (in Python 3):

    >>> regex.match(r"(?iV1)strasse", "stra\N{LATIN SMALL LETTER SHARP S}e").span()
    (0, 6)
    >>> regex.match(r"(?iV1)stra\N{LATIN SMALL LETTER SHARP S}e", "STRASSE").span()
    (0, 7)

    In version 0 behaviour, it uses simple case-folding for backward compatibility with the re module.

  • Approximate “fuzzy” matching (Hg issue 12, Hg issue 41, Hg issue 109)

    Regex usually attempts an exact match, but sometimes an approximate, or “fuzzy”, match is needed, for those cases where the text being searched may contain errors in the form of inserted, deleted or substituted characters.

    A fuzzy regex specifies which types of errors are permitted, and, optionally, either the minimum and maximum or only the maximum permitted number of each type. (You cannot specify only a minimum.)

    The 3 types of error are:

    • Insertion, indicated by “i”

    • Deletion, indicated by “d”

    • Substitution, indicated by “s”

    In addition, “e” indicates any type of error.

    The fuzziness of a regex item is specified between “{” and “}” after the item.

    Examples:

    • foo match “foo” exactly

    • (?:foo){i} match “foo”, permitting insertions

    • (?:foo){d} match “foo”, permitting deletions

    • (?:foo){s} match “foo”, permitting substitutions

    • (?:foo){i,s} match “foo”, permitting insertions and substitutions

    • (?:foo){e} match “foo”, permitting errors

    If a certain type of error is specified, then any type not specified will not be permitted.

    In the following examples I’ll omit the item and write only the fuzziness:

    • {i<=3} permit at most 3 insertions, but no other types

    • {d<=3} permit at most 3 deletions, but no other types

    • {s<=3} permit at most 3 substitutions, but no other types

    • {i<=1,s<=2} permit at most 1 insertion and at most 2 substitutions, but no deletions

    • {e<=3} permit at most 3 errors

    • {1<=e<=3} permit at least 1 and at most 3 errors

    • {i<=2,d<=2,e<=3} permit at most 2 insertions, at most 2 deletions, at most 3 errors in total, but no substitutions

    It’s also possible to state the costs of each type of error and the maximum permitted total cost.

    Examples:

    • {2i+2d+1s<=4} each insertion costs 2, each deletion costs 2, each substitution costs 1, the total cost must not exceed 4

    • {i<=1,d<=1,s<=1,2i+2d+1s<=4} at most 1 insertion, at most 1 deletion, at most 1 substitution; each insertion costs 2, each deletion costs 2, each substitution costs 1, the total cost must not exceed 4

    You can also use “<” instead of “<=” if you want an exclusive minimum or maximum:

    • {e<=3} permit up to 3 errors

    • {e<4} permit fewer than 4 errors

    • {0<e<4} permit more than 0 but fewer than 4 errors

    By default, fuzzy matching searches for the first match that meets the given constraints. The ENHANCEMATCH flag will cause it to attempt to improve the fit (i.e. reduce the number of errors) of the match that it has found.

    The BESTMATCH flag will make it search for the best match instead.

    Further examples to note:

    • regex.search("(dog){e}", "cat and dog")[1] returns "cat" because that matches "dog" with 3 errors, which is within the limit (an unlimited number of errors is permitted).

    • regex.search("(dog){e<=1}", "cat and dog")[1] returns " dog" (with a leading space) because that matches "dog" with 1 error, which is within the limit (1 error is permitted).

    • regex.search("(?e)(dog){e<=1}", "cat and dog")[1] returns "dog" (without a leading space) because the fuzzy search matches " dog" with 1 error, which is within the limit (1 error is permitted), and the (?e) then makes it attempt a better fit.

    In the first two examples there are perfect matches later in the string, but in neither case is it the first possible match.

    The match object has an attribute fuzzy_counts which gives the total number of substitutions, insertions and deletions.

    >>> # A 'raw' fuzzy match:
    >>> regex.fullmatch(r"(?:cats|cat){e<=1}", "cat").fuzzy_counts
    (0, 0, 1)
    >>> # 0 substitutions, 0 insertions, 1 deletion.
    
    >>> # A better match might be possible if the ENHANCEMATCH flag used:
    >>> regex.fullmatch(r"(?e)(?:cats|cat){e<=1}", "cat").fuzzy_counts
    (0, 0, 0)
    >>> # 0 substitutions, 0 insertions, 0 deletions.
  • Named lists (Hg issue 11)

    \L<name>

    There are occasions where you may want to include a list (actually, a set) of options in a regex.

    One way is to build the pattern like this:

    >>> p = regex.compile(r"first|second|third|fourth|fifth")

    but if the list is large, parsing the resulting regex can take considerable time, and care must also be taken that the strings are properly escaped if they contain any character that has a special meaning in a regex, and that if there is a shorter string that occurs initially in a longer string that the longer string is listed before the shorter one, for example, “cats” before “cat”.

    The new alternative is to use a named list:

    >>> option_set = ["first", "second", "third", "fourth", "fifth"]
    >>> p = regex.compile(r"\L<options>", options=option_set)

    The order of the items is irrelevant, they are treated as a set. The named lists are available as the .named_lists attribute of the pattern object :

    >>> print(p.named_lists)
    {'options': frozenset({'second', 'fifth', 'fourth', 'third', 'first'})}
  • Start and end of word

    \m matches at the start of a word.

    \M matches at the end of a word.

    Compare with \b, which matches at the start or end of a word.

  • Unicode line separators

    Normally the only line separator is \n (\x0A), but if the WORD flag is turned on then the line separators are the pair \x0D\x0A, and \x0A, \x0B, \x0C and \x0D, plus \x85, \u2028 and \u2029 when working with Unicode.

    This affects the regex dot ".", which, with the DOTALL flag turned off, matches any character except a line separator. It also affects the line anchors ^ and $ (in multiline mode).

  • Set operators

    Version 1 behaviour only

    Set operators have been added, and a set [...] can include nested sets.

    The operators, in order of increasing precedence, are:

    • || for union (“x||y” means “x or y”)

    • ~~ (double tilde) for symmetric difference (“x~~y” means “x or y, but not both”)

    • && for intersection (“x&&y” means “x and y”)

    • -- (double dash) for difference (“x–y” means “x but not y”)

    Implicit union, ie, simple juxtaposition like in [ab], has the highest precedence. Thus, [ab&&cd] is the same as [[a||b]&&[c||d]].

    Examples:

    • [ab] # Set containing ‘a’ and ‘b’

    • [a-z] # Set containing ‘a’ .. ‘z’

    • [[a-z]--[qw]] # Set containing ‘a’ .. ‘z’, but not ‘q’ or ‘w’

    • [a-z--qw] # Same as above

    • [\p{L}--QW] # Set containing all letters except ‘Q’ and ‘W’

    • [\p{N}--[0-9]] # Set containing all numbers except ‘0’ .. ‘9’

    • [\p{ASCII}&&\p{Letter}] # Set containing all characters which are ASCII and letter

  • regex.escape (issue #2650)

    regex.escape has an additional keyword parameter special_only. When True, only ‘special’ regex characters, such as ‘?’, are escaped.

    Examples:

    >>> regex.escape("foo!?")
    'foo\\!\\?'
    >>> regex.escape("foo!?", special_only=True)
    'foo!\\?'
  • Repeated captures (issue #7132)

    A match object has additional methods which return information on all the successful matches of a repeated capture group. These methods are:

    • matchobject.captures([group1, ...])

      • Returns a list of the strings matched in a group or groups. Compare with matchobject.group([group1, ...]).

    • matchobject.starts([group])

      • Returns a list of the start positions. Compare with matchobject.start([group]).

    • matchobject.ends([group])

      • Returns a list of the end positions. Compare with matchobject.end([group]).

    • matchobject.spans([group])

      • Returns a list of the spans. Compare with matchobject.span([group]).

    Examples:

    >>> m = regex.search(r"(\w{3})+", "123456789")
    >>> m.group(1)
    '789'
    >>> m.captures(1)
    ['123', '456', '789']
    >>> m.start(1)
    6
    >>> m.starts(1)
    [0, 3, 6]
    >>> m.end(1)
    9
    >>> m.ends(1)
    [3, 6, 9]
    >>> m.span(1)
    (6, 9)
    >>> m.spans(1)
    [(0, 3), (3, 6), (6, 9)]
  • Atomic grouping (issue #433030)

    (?>...)

    If the following pattern subsequently fails, then the subpattern as a whole will fail.

  • Possessive quantifiers.

    (?:...)?+ ; (?:...)*+ ; (?:...)++ ; (?:...){min,max}+

    The subpattern is matched up to ‘max’ times. If the following pattern subsequently fails, then all of the repeated subpatterns will fail as a whole. For example, (?:...)++ is equivalent to (?>(?:...)+).

  • Scoped flags (issue #433028)

    (?flags-flags:...)

    The flags will apply only to the subpattern. Flags can be turned on or off.

  • Inline flags (issue #433024, issue #433027)

    (?flags-flags)

    Version 0 behaviour: the flags apply to the entire pattern, and they can’t be turned off.

    Version 1 behaviour: the flags apply to the end of the group or pattern, and they can be turned on or off.

  • Repeated repeats (issue #2537)

    A regex like ((x|y+)*)* will be accepted and will work correctly, but should complete more quickly.

  • Definition of ‘word’ character (issue #1693050)

    The definition of a ‘word’ character has been expanded for Unicode. It now conforms to the Unicode specification at http://www.unicode.org/reports/tr29/. This applies to \w, \W, \b and \B.

  • Groups in lookahead and lookbehind (issue #814253)

    Groups and group references are permitted in both lookahead and lookbehind.

  • Variable-length lookbehind

    A lookbehind can match a variable-length string.

  • Correct handling of charset with ignore case flag (issue #3511)

    Ranges within charsets are handled correctly when the ignore-case flag is turned on.

  • Unmatched group in replacement (issue #1519638)

    An unmatched group is treated as an empty string in a replacement template.

  • ‘Pathological’ patterns (issue #1566086, issue #1662581, issue #1448325, issue #1721518, issue #1297193)

    ‘Pathological’ patterns should complete more quickly.

  • Flags argument for regex.split, regex.sub and regex.subn (issue #3482)

    regex.split, regex.sub and regex.subn support a ‘flags’ argument.

  • Pos and endpos arguments for regex.sub and regex.subn

    regex.sub and regex.subn support ‘pos’ and ‘endpos’ arguments.

  • ‘Overlapped’ argument for regex.findall and regex.finditer

    regex.findall and regex.finditer support an ‘overlapped’ flag which permits overlapped matches.

  • Unicode escapes (issue #3665)

    The Unicode escapes \uxxxx and \Uxxxxxxxx are supported.

  • Large patterns (issue #1160)

    Patterns can be much larger.

  • Zero-width match with regex.finditer (issue #1647489)

    regex.finditer behaves correctly when it splits at a zero-width match.

  • Zero-width split with regex.split (issue #3262)

    Version 0 behaviour: a string won’t be split at a zero-width match.

    Version 1 behaviour: a string will be split at a zero-width match.

  • Splititer

    regex.splititer has been added. It’s a generator equivalent of regex.split.

  • Subscripting for groups

    A match object accepts access to the captured groups via subscripting and slicing:

    >>> m = regex.search(r"(?P<before>.*?)(?P<num>\d+)(?P<after>.*)", "pqr123stu")
    >>> print m["before"]
    pqr
    >>> print m["num"]
    123
    >>> print m["after"]
    stu
    >>> print len(m)
    4
    >>> print m[:]
    ('pqr123stu', 'pqr', '123', 'stu')
  • Named groups

    Groups can be named with (?<name>...) as well as the current (?P<name>...).

  • Group references

    Groups can be referenced within a pattern with \g<name>. This also allows there to be more than 99 groups.

  • Named characters

    \N{name}

    Named characters are supported. (Note: only those known by Python’s Unicode database are supported.)

  • Unicode codepoint properties, including scripts and blocks

    \p{property=value}; \P{property=value}; \p{value} ; \P{value}

    Many Unicode properties are supported, including blocks and scripts. \p{property=value} or \p{property:value} matches a character whose property property has value value. The inverse of \p{property=value} is \P{property=value} or \p{^property=value}.

    If the short form \p{value} is used, the properties are checked in the order: General_Category, Script, Block, binary property:

    • Latin, the ‘Latin’ script (Script=Latin).

    • Cyrillic, the ‘Cyrillic’ script (Script=Cyrillic).

    • BasicLatin, the ‘BasicLatin’ block (Block=BasicLatin).

    • Alphabetic, the ‘Alphabetic’ binary property (Alphabetic=Yes).

    A short form starting with Is indicates a script or binary property:

    • IsLatin, the ‘Latin’ script (Script=Latin).

    • IsCyrillic, the ‘Cyrillic’ script (Script=Cyrillic).

    • IsAlphabetic, the ‘Alphabetic’ binary property (Alphabetic=Yes).

    A short form starting with In indicates a block property:

    • InBasicLatin, the ‘BasicLatin’ block (Block=BasicLatin).

    • InCyrillic, the ‘Cyrillic’ block (Block=Cyrillic).

  • POSIX character classes

    [[:alpha:]]; [[:^alpha:]]

    POSIX character classes are supported. These are normally treated as an alternative form of \p{...}.

    The exceptions are alnum, digit, punct and xdigit, whose definitions are different from those of Unicode.

    [[:alnum:]] is equivalent to \p{posix_alnum}.

    [[:digit:]] is equivalent to \p{posix_digit}.

    [[:punct:]] is equivalent to \p{posix_punct}.

    [[:xdigit:]] is equivalent to \p{posix_xdigit}.

  • Search anchor

    \G

    A search anchor has been added. It matches at the position where each search started/continued and can be used for contiguous matches or in negative variable-length lookbehinds to limit how far back the lookbehind goes:

    >>> regex.findall(r"\w{2}", "abcd ef")
    ['ab', 'cd', 'ef']
    >>> regex.findall(r"\G\w{2}", "abcd ef")
    ['ab', 'cd']
    • The search starts at position 0 and matches 2 letters ‘ab’.

    • The search continues at position 2 and matches 2 letters ‘cd’.

    • The search continues at position 4 and fails to match any letters.

    • The anchor stops the search start position from being advanced, so there are no more results.

  • Reverse searching

    Searches can now work backwards:

    >>> regex.findall(r".", "abc")
    ['a', 'b', 'c']
    >>> regex.findall(r"(?r).", "abc")
    ['c', 'b', 'a']

    Note: the result of a reverse search is not necessarily the reverse of a forward search:

    >>> regex.findall(r"..", "abcde")
    ['ab', 'cd']
    >>> regex.findall(r"(?r)..", "abcde")
    ['de', 'bc']
  • Matching a single grapheme

    \X

    The grapheme matcher is supported. It now conforms to the Unicode specification at http://www.unicode.org/reports/tr29/.

  • Branch reset

    (?|...|...)

    Capture group numbers will be reused across the alternatives, but groups with different names will have different group numbers.

    Examples:

    >>> regex.match(r"(?|(first)|(second))", "first").groups()
    ('first',)
    >>> regex.match(r"(?|(first)|(second))", "second").groups()
    ('second',)

    Note that there is only one group.

  • Default Unicode word boundary

    The WORD flag changes the definition of a ‘word boundary’ to that of a default Unicode word boundary. This applies to \b and \B.

  • SRE engine do not release the GIL (issue #1366311)

    The regex module can release the GIL during matching (see the above section on multithreading).

    Iterators can be safely shared across threads.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

regex-2016.06.19.tar.gz (584.8 kB view details)

Uploaded Source

Built Distributions

regex-2016.06.19-cp35-none-win_amd64.whl (237.7 kB view details)

Uploaded CPython 3.5Windows x86-64

regex-2016.06.19-cp35-none-win32.whl (231.9 kB view details)

Uploaded CPython 3.5Windows x86

regex-2016.06.19-cp34-none-win_amd64.whl (237.9 kB view details)

Uploaded CPython 3.4Windows x86-64

regex-2016.06.19-cp34-none-win32.whl (231.9 kB view details)

Uploaded CPython 3.4Windows x86

regex-2016.06.19-cp33-none-win_amd64.whl (237.8 kB view details)

Uploaded CPython 3.3Windows x86-64

regex-2016.06.19-cp33-none-win32.whl (231.7 kB view details)

Uploaded CPython 3.3Windows x86

regex-2016.06.19-cp32-none-win_amd64.whl (236.8 kB view details)

Uploaded CPython 3.2Windows x86-64

regex-2016.06.19-cp32-none-win32.whl (231.0 kB view details)

Uploaded CPython 3.2Windows x86

regex-2016.06.19-cp31-none-win_amd64.whl (236.8 kB view details)

Uploaded CPython 3.1Windows x86-64

regex-2016.06.19-cp31-none-win32.whl (231.0 kB view details)

Uploaded CPython 3.1Windows x86

regex-2016.06.19-cp27-none-win_amd64.whl (236.8 kB view details)

Uploaded CPython 2.7Windows x86-64

regex-2016.06.19-cp27-none-win32.whl (230.9 kB view details)

Uploaded CPython 2.7Windows x86

regex-2016.06.19-cp26-none-win_amd64.whl (236.7 kB view details)

Uploaded CPython 2.6Windows x86-64

regex-2016.06.19-cp26-none-win32.whl (230.8 kB view details)

Uploaded CPython 2.6Windows x86

regex-2016.06.19-cp25-none-win_amd64.whl (234.7 kB view details)

Uploaded CPython 2.5Windows x86-64

regex-2016.06.19-cp25-none-win32.whl (229.6 kB view details)

Uploaded CPython 2.5Windows x86

File details

Details for the file regex-2016.06.19.tar.gz.

File metadata

  • Download URL: regex-2016.06.19.tar.gz
  • Upload date:
  • Size: 584.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for regex-2016.06.19.tar.gz
Algorithm Hash digest
SHA256 7d68d01bd0592d920888b73e317b0e77255658d85b870ae17cfd71dd98ad12f0
MD5 d10f923cdda1a6cb674bbecc9440f42b
BLAKE2b-256 b8105c386de9425f1e5b8b33b7895681690b49a121f37e0e7e6ae9eba94f51bc

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 58ad3176632a64d3154a94c8c63625b9643e9daf9b4dda9ba768b394a68ed6ec
MD5 dbe4dc212e6225aca7a61d1e1f21f495
BLAKE2b-256 25749598c6121487c7df428f2149046508cc7e9f8244e845d6a5742d09a5ff37

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp35-none-win32.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp35-none-win32.whl
Algorithm Hash digest
SHA256 09a1137289be867f35b97cdef2d1ed3094df5723256e8fa4c129c4c8f4f9aaba
MD5 23a5a9f38def81e4a16c69193c8ac980
BLAKE2b-256 7461e06507c191eafdd137a42fc5a0c5ef4a828170da1238432d034af3f67061

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 f1d3abb69594a4a5f720064f2461a4403d59d98746f41aa4074f67bafa4696f4
MD5 91cab71935ab2b5c957fcdc98b563094
BLAKE2b-256 6658358d1dfeafd6778ada1ac7e18c1528c7dca1132d8a5bb37ebf1f96d2bd75

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp34-none-win32.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp34-none-win32.whl
Algorithm Hash digest
SHA256 35b4e5d11ee1ef05c4eb9a7433d908af4dba07ec29070423bf6356e62b709429
MD5 bdf2396b99bbb9bad33a5258adc43faf
BLAKE2b-256 a273263391697f8ed4e95315b1aa37978a465e583bddc4b12c1befbef3b0108a

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp33-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp33-none-win_amd64.whl
Algorithm Hash digest
SHA256 2f999e8b02746473ca4119e4aab49564c8764d09486fc9d09a5a5fb1f036295e
MD5 263249007fd08f0dd3d555fedb88c8d6
BLAKE2b-256 d41314275e399507ced1b267fdf61ae9406a7bc485a340441d5d57758e88c7cb

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp33-none-win32.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp33-none-win32.whl
Algorithm Hash digest
SHA256 ba836549ab581d59790726d0653aa0dd246b9cc46e25586e568adc531a60cff3
MD5 6e3dd676f97744674152cee0c8ffa887
BLAKE2b-256 47c9ac11082d52fe56480717de3e3f35a5e5e0e370f79ceceaee9a30f319407b

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp32-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp32-none-win_amd64.whl
Algorithm Hash digest
SHA256 b1c9865c19c228e5b0ed9c4d2cf7cabd165ad2e6b52e6b9b33ada3306ef51970
MD5 6bb6db5db2e66b579daeacba6a5b24e2
BLAKE2b-256 ebcb71e7648628f5e10dfd7a6d159d01952da6c7687a0255d672dce57ea9cf37

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp32-none-win32.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp32-none-win32.whl
Algorithm Hash digest
SHA256 e7176a0f0caee0343145acf8399020e1d0bff7fce893298ae0741e170ebd736a
MD5 ee969a83417d36e0437fed4b67f6a944
BLAKE2b-256 fae8f58f0d241eda8e43c1b8de8d107a64702eb03512fae09f29f589ad43f443

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp31-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp31-none-win_amd64.whl
Algorithm Hash digest
SHA256 e3da61606cf6c09cc80df9246ad40fce5e1106dd3e3a06bc0b537c49a834c56e
MD5 72dd2cd791b9fe18c7f8da52070ba1c8
BLAKE2b-256 58b80bf9b9ba40cc5dc4b6add588034bcfc3208d0c53b56646a903878d278f8b

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp31-none-win32.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp31-none-win32.whl
Algorithm Hash digest
SHA256 1ffcd46cf8c9ed829c377d70b292bf7d8abe7e3e98e213c4637dd234a9fd03ac
MD5 18e77d172d021e862482852e49d91575
BLAKE2b-256 ba13b341334fbdc751cff86b6cac871039b900f6395c0da6c956e421204ac495

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 ae42781c093393c3787a886dfd6eaa15a6959520ce821f65a7d1f57940997a01
MD5 eb6c66348277911732a97685dbc3f4af
BLAKE2b-256 a8e8a0b200b97bebea9a2326a5fb6bd1bf1d9ce186b8eddaa24bd203cd79389b

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp27-none-win32.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp27-none-win32.whl
Algorithm Hash digest
SHA256 e6e432530161122ce0a2bc7a5bae4b4742c4de57c2f90bfd71a8c01e5fdf2ba2
MD5 1de3da777a11ed5cb776afaf19da22d0
BLAKE2b-256 460b7c446af2622e40f4b6354271bdcd9ec668b022af826333c3ccb7b1332cc0

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp26-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp26-none-win_amd64.whl
Algorithm Hash digest
SHA256 929c17c8f9325620c6b60045a23b5d9764f8a540dff68ee3377c2ff96247e66f
MD5 b4f45309e3f1ab3576fc023d1a161057
BLAKE2b-256 2f5767c985fc7edf9ed5530ef06330532bd70c13c1d4f78f23c698068f2f90da

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp26-none-win32.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp26-none-win32.whl
Algorithm Hash digest
SHA256 99cf255808221bb6b187c8c4a0179bf67eb210373c8a9cbfa2de21af1674aa3b
MD5 63e0ccef3d320d98e8496e0595129e37
BLAKE2b-256 e4063c7e1fe0e63cf45d92f910a65bdef2ec0a9f703634bad41aa137e840c231

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp25-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp25-none-win_amd64.whl
Algorithm Hash digest
SHA256 a795e79fffda6ebb8612954c2f0eadabedff74ea73fdeb6e678b31e4046db8fe
MD5 af3adf7bc521cabeaa79cec6e0208a6b
BLAKE2b-256 b45f8b0f901feb16c27bbbcbd93fc127e6be5c158b22083e1a2b503a296379f7

See more details on using hashes here.

File details

Details for the file regex-2016.06.19-cp25-none-win32.whl.

File metadata

File hashes

Hashes for regex-2016.06.19-cp25-none-win32.whl
Algorithm Hash digest
SHA256 6bea89758b834df9681a7670646e8589d27b63a608a60a9eba61a962cd240dec
MD5 5af66697571c1e17753677f2fcdc78fa
BLAKE2b-256 50851c03689fa47954d4652f5b8d12851c8ed9c5fe2a1b660893c4d6ed47d9f6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page