Skip to main content

Alternative regular expression module, to replace re.

Project description

Introduction

This regex implementation is backwards-compatible with the standard ‘re’ module, but offers additional functionality.

Note

The re module’s behaviour with zero-width matches changed in Python 3.7, and this module will follow that behaviour when compiled for Python 3.7.

Old vs new behaviour

In order to be compatible with the re module, this module has 2 behaviours:

  • Version 0 behaviour (old behaviour, compatible with the re module):

    Please note that the re module’s behaviour may change over time, and I’ll endeavour to match that behaviour in version 0.

    • Indicated by the VERSION0 or V0 flag, or (?V0) in the pattern.

    • Zero-width matches are not handled correctly in the re module before Python 3.7. The behaviour in those earlier versions is:

      • .split won’t split a string at a zero-width match.

      • .sub will advance by one character after a zero-width match.

    • Inline flags apply to the entire pattern, and they can’t be turned off.

    • Only simple sets are supported.

    • Case-insensitive matches in Unicode use simple case-folding by default.

  • Version 1 behaviour (new behaviour, possibly different from the re module):

    • Indicated by the VERSION1 or V1 flag, or (?V1) in the pattern.

    • Zero-width matches are handled correctly.

    • Inline flags apply to the end of the group or pattern, and they can be turned off.

    • Nested sets and set operations are supported.

    • Case-insensitive matches in Unicode use full case-folding by default.

If no version is specified, the regex module will default to regex.DEFAULT_VERSION.

Case-insensitive matches in Unicode

The regex module supports both simple and full case-folding for case-insensitive matches in Unicode. Use of full case-folding can be turned on using the FULLCASE or F flag, or (?f) in the pattern. Please note that this flag affects how the IGNORECASE flag works; the FULLCASE flag itself does not turn on case-insensitive matching.

In the version 0 behaviour, the flag is off by default.

In the version 1 behaviour, the flag is on by default.

Nested sets and set operations

It’s not possible to support both simple sets, as used in the re module, and nested sets at the same time because of a difference in the meaning of an unescaped "[" in a set.

For example, the pattern [[a-z]--[aeiou]] is treated in the version 0 behaviour (simple sets, compatible with the re module) as:

  • Set containing “[” and the letters “a” to “z”

  • Literal “–”

  • Set containing letters “a”, “e”, “i”, “o”, “u”

but in the version 1 behaviour (nested sets, enhanced behaviour) as:

  • Set which is:

    • Set containing the letters “a” to “z”

  • but excluding:

    • Set containing the letters “a”, “e”, “i”, “o”, “u”

Version 0 behaviour: only simple sets are supported.

Version 1 behaviour: nested sets and set operations are supported.

Flags

There are 2 kinds of flag: scoped and global. Scoped flags can apply to only part of a pattern and can be turned on or off; global flags apply to the entire pattern and can only be turned on.

The scoped flags are: FULLCASE, IGNORECASE, MULTILINE, DOTALL, VERBOSE, WORD.

The global flags are: ASCII, BESTMATCH, ENHANCEMATCH, LOCALE, POSIX, REVERSE, UNICODE, VERSION0, VERSION1.

If neither the ASCII, LOCALE nor UNICODE flag is specified, it will default to UNICODE if the regex pattern is a Unicode string and ASCII if it’s a bytestring.

The ENHANCEMATCH flag makes fuzzy matching attempt to improve the fit of the next match that it finds.

The BESTMATCH flag makes fuzzy matching search for the best match instead of the next match.

Notes on named capture groups

All capture groups have a group number, starting from 1.

Groups with the same group name will have the same group number, and groups with a different group name will have a different group number.

The same name can be used by more than one group, with later captures ‘overwriting’ earlier captures. All of the captures of the group will be available from the captures method of the match object.

Group numbers will be reused across different branches of a branch reset, eg. (?|(first)|(second)) has only group 1. If capture groups have different group names then they will, of course, have different group numbers, eg. (?|(?P<foo>first)|(?P<bar>second)) has group 1 (“foo”) and group 2 (“bar”).

In the regex (\s+)(?|(?P<foo>[A-Z]+)|(\w+) (?P<foo>[0-9]+) there are 2 groups:

  • (\s+) is group 1.

  • (?P<foo>[A-Z]+) is group 2, also called “foo”.

  • (\w+) is group 2 because of the branch reset.

  • (?P<foo>[0-9]+) is group 2 because it’s called “foo”.

If you want to prevent (\w+) from being group 2, you need to name it (different name, different group number).

Multithreading

The regex module releases the GIL during matching on instances of the built-in (immutable) string classes, enabling other Python threads to run concurrently. It is also possible to force the regex module to release the GIL during matching by calling the matching methods with the keyword argument concurrent=True. The behaviour is undefined if the string changes during matching, so use it only when it is guaranteed that that won’t happen.

Building for 64-bits

If the source files are built for a 64-bit target then the string positions will also be 64-bit.

Unicode

This module supports Unicode 10.0.

Full Unicode case-folding is supported.

Additional features

The issue numbers relate to the Python bug tracker, except where listed as “Hg issue”.

  • Fixed support for pickling compiled regexes (Hg issue 195)

  • Added support for lookaround in conditional pattern (Hg issue 163)

    The test of a conditional pattern can now be a lookaround.

    Examples:

    >>> regex.match(r'(?(?=\d)\d+|\w+)', '123abc')
    <regex.Match object; span=(0, 3), match='123'>
    >>> regex.match(r'(?(?=\d)\d+|\w+)', 'abc123')
    <regex.Match object; span=(0, 6), match='abc123'>

    This is not quite the same as putting a lookaround in the first branch of a pair of alternatives.

    Examples:

    >>> print(regex.match(r'(?:(?=\d)\d+\b|\w+)', '123abc'))
    <regex.Match object; span=(0, 6), match='123abc'>
    >>> print(regex.match(r'(?(?=\d)\d+\b|\w+)', '123abc'))
    None

    In the first example, the lookaround matched, but the remainder of the first branch failed to match, and so the second branch was attempted, whereas in the second example, the lookaround matched, and the first branch failed to match, but the second branch was not attempted.

  • Added POSIX matching (leftmost longest) (Hg issue 150)

    The POSIX standard for regex is to return the leftmost longest match. This can be turned on using the POSIX flag ((?p)).

    Examples:

    >>> # Normal matching.
    >>> regex.search(r'Mr|Mrs', 'Mrs')
    <regex.Match object; span=(0, 2), match='Mr'>
    >>> regex.search(r'one(self)?(selfsufficient)?', 'oneselfsufficient')
    <regex.Match object; span=(0, 7), match='oneself'>
    >>> # POSIX matching.
    >>> regex.search(r'(?p)Mr|Mrs', 'Mrs')
    <regex.Match object; span=(0, 3), match='Mrs'>
    >>> regex.search(r'(?p)one(self)?(selfsufficient)?', 'oneselfsufficient')
    <regex.Match object; span=(0, 17), match='oneselfsufficient'>

    Note that it will take longer to find matches because when it finds a match at a certain position, it won’t return that immediately, but will keep looking to see if there’s another longer match there.

  • Added (?(DEFINE)...) (Hg issue 152)

    If there’s no group called “DEFINE”, then … will be ignored, but any group definitions within it will be available.

    Examples:

    >>> regex.search(r'(?(DEFINE)(?P<quant>\d+)(?P<item>\w+))(?&quant) (?&item)', '5 elephants')
    <regex.Match object; span=(0, 11), match='5 elephants'>
  • Added (*PRUNE), (*SKIP) and (*FAIL) (Hg issue 153)

    (*PRUNE) discards the backtracking info up to that point. When used in an atomic group or a lookaround, it won’t affect the enclosing pattern.

    (*SKIP) is similar to (*PRUNE), except that it also sets where in the text the next attempt to match will start. When used in an atomic group or a lookaround, it won’t affect the enclosing pattern.

    (*FAIL) causes immediate backtracking. (*F) is a permitted abbreviation.

  • Added \K (Hg issue 151)

    Keeps the part of the entire match after the position where \K occurred; the part before it is discarded.

    It does not affect what capture groups return.

    Examples:

    >>> m = regex.search(r'(\w\w\K\w\w\w)', 'abcdef')
    >>> m[0]
    'cde'
    >>> m[1]
    'abcde'
    >>>
    >>> m = regex.search(r'(?r)(\w\w\K\w\w\w)', 'abcdef')
    >>> m[0]
    'bc'
    >>> m[1]
    'bcdef'
  • Added capture subscripting for expandf and subf/subfn (Hg issue 133)

    You can now use subscripting to get the captures of a repeated capture group.

    Examples:

    >>> m = regex.match(r"(\w)+", "abc")
    >>> m.expandf("{1}")
    'c'
    >>> m.expandf("{1[0]} {1[1]} {1[2]}")
    'a b c'
    >>> m.expandf("{1[-1]} {1[-2]} {1[-3]}")
    'c b a'
    >>>
    >>> m = regex.match(r"(?P<letter>\w)+", "abc")
    >>> m.expandf("{letter}")
    'c'
    >>> m.expandf("{letter[0]} {letter[1]} {letter[2]}")
    'a b c'
    >>> m.expandf("{letter[-1]} {letter[-2]} {letter[-3]}")
    'c b a'
  • Added support for referring to a group by number using (?P=...).

    This is in addition to the existing \g<...>.

  • Fixed the handling of locale-sensitive regexes.

    The LOCALE flag is intended for legacy code and has limited support. You’re still recommended to use Unicode instead.

  • Added partial matches (Hg issue 102)

    A partial match is one that matches up to the end of string, but that string has been truncated and you want to know whether a complete match could be possible if the string had not been truncated.

    Partial matches are supported by match, search, fullmatch and finditer with the partial keyword argument.

    Match objects have a partial attribute, which is True if it’s a partial match.

    For example, if you wanted a user to enter a 4-digit number and check it character by character as it was being entered:

    >>> pattern = regex.compile(r'\d{4}')
    
    >>> # Initially, nothing has been entered:
    >>> print(pattern.fullmatch('', partial=True))
    <regex.Match object; span=(0, 0), match='', partial=True>
    
    >>> # An empty string is OK, but it's only a partial match.
    >>> # The user enters a letter:
    >>> print(pattern.fullmatch('a', partial=True))
    None
    >>> # It'll never match.
    
    >>> # The user deletes that and enters a digit:
    >>> print(pattern.fullmatch('1', partial=True))
    <regex.Match object; span=(0, 1), match='1', partial=True>
    >>> # It matches this far, but it's only a partial match.
    
    >>> # The user enters 2 more digits:
    >>> print(pattern.fullmatch('123', partial=True))
    <regex.Match object; span=(0, 3), match='123', partial=True>
    >>> # It matches this far, but it's only a partial match.
    
    >>> # The user enters another digit:
    >>> print(pattern.fullmatch('1234', partial=True))
    <regex.Match object; span=(0, 4), match='1234'>
    >>> # It's a complete match.
    
    >>> # If the user enters another digit:
    >>> print(pattern.fullmatch('12345', partial=True))
    None
    >>> # It's no longer a match.
    
    >>> # This is a partial match:
    >>> pattern.match('123', partial=True).partial
    True
    
    >>> # This is a complete match:
    >>> pattern.match('1233', partial=True).partial
    False
  • * operator not working correctly with sub() (Hg issue 106)

    Sometimes it’s not clear how zero-width matches should be handled. For example, should .* match 0 characters directly after matching >0 characters?

    Examples:

    # Python 3.7 and later
    >>> regex.sub('.*', 'x', 'test')
    'x'
    >>> regex.sub('.*?', '|', 'test')
    '|||||'
    
    # Python 3.6 and earlier
    >>> regex.sub('(?V0).*', 'x', 'test')
    'x'
    >>> regex.sub('(?V1).*', 'x', 'test')
    'xx'
    >>> regex.sub('(?V0).*?', '|', 'test')
    '|t|e|s|t|'
    >>> regex.sub('(?V1).*?', '|', 'test')
    '|||||||||'
  • re.group() should never return a bytearray (issue #18468)

    For compatibility with the re module, the regex module returns all matching bytestrings as bytes, starting from Python 3.4.

    Examples:

    >>> regex.match(b'.', bytearray(b'a')).group()
    # Python 3.4 and later
    b'a'
    # Python 3.3 and earlier
    bytearray(b'a')
  • Added capturesdict (Hg issue 86)

    capturesdict is a combination of groupdict and captures:

    groupdict returns a dict of the named groups and the last capture of those groups.

    captures returns a list of all the captures of a group

    capturesdict returns a dict of the named groups and lists of all the captures of those groups.

    Examples:

    >>> m = regex.match(r"(?:(?P<word>\w+) (?P<digits>\d+)\n)+", "one 1\ntwo 2\nthree 3\n")
    >>> m.groupdict()
    {'word': 'three', 'digits': '3'}
    >>> m.captures("word")
    ['one', 'two', 'three']
    >>> m.captures("digits")
    ['1', '2', '3']
    >>> m.capturesdict()
    {'word': ['one', 'two', 'three'], 'digits': ['1', '2', '3']}
  • Allow duplicate names of groups (Hg issue 87)

    Group names can now be duplicated.

    Examples:

    >>> # With optional groups:
    >>>
    >>> # Both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", "first or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['first', 'second']
    >>> # Only the second group captures.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", " or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['second']
    >>> # Only the first group captures.
    >>> m = regex.match(r"(?P<item>\w+)? or (?P<item>\w+)?", "first or ")
    >>> m.group("item")
    'first'
    >>> m.captures("item")
    ['first']
    >>>
    >>> # With mandatory groups:
    >>>
    >>> # Both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)?", "first or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['first', 'second']
    >>> # Again, both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)", " or second")
    >>> m.group("item")
    'second'
    >>> m.captures("item")
    ['', 'second']
    >>> # And yet again, both groups capture, the second capture 'overwriting' the first.
    >>> m = regex.match(r"(?P<item>\w*) or (?P<item>\w*)", "first or ")
    >>> m.group("item")
    ''
    >>> m.captures("item")
    ['first', '']
  • Added fullmatch (issue #16203)

    fullmatch behaves like match, except that it must match all of the string.

    Examples:

    >>> print(regex.fullmatch(r"abc", "abc").span())
    (0, 3)
    >>> print(regex.fullmatch(r"abc", "abcx"))
    None
    >>> print(regex.fullmatch(r"abc", "abcx", endpos=3).span())
    (0, 3)
    >>> print(regex.fullmatch(r"abc", "xabcy", pos=1, endpos=4).span())
    (1, 4)
    >>>
    >>> regex.match(r"a.*?", "abcd").group(0)
    'a'
    >>> regex.fullmatch(r"a.*?", "abcd").group(0)
    'abcd'
  • Added subf and subfn

    subf and subfn are alternatives to sub and subn respectively. When passed a replacement string, they treat it as a format string.

    Examples:

    >>> regex.subf(r"(\w+) (\w+)", "{0} => {2} {1}", "foo bar")
    'foo bar => bar foo'
    >>> regex.subf(r"(?P<word1>\w+) (?P<word2>\w+)", "{word2} {word1}", "foo bar")
    'bar foo'
  • Added expandf to match object

    expandf is an alternative to expand. When passed a replacement string, it treats it as a format string.

    Examples:

    >>> m = regex.match(r"(\w+) (\w+)", "foo bar")
    >>> m.expandf("{0} => {2} {1}")
    'foo bar => bar foo'
    >>>
    >>> m = regex.match(r"(?P<word1>\w+) (?P<word2>\w+)", "foo bar")
    >>> m.expandf("{word2} {word1}")
    'bar foo'
  • Detach searched string

    A match object contains a reference to the string that was searched, via its string attribute. The match object now has a detach_string method that will ‘detach’ that string, making it available for garbage collection (this might save valuable memory if that string is very large).

    Example:

    >>> m = regex.search(r"\w+", "Hello world")
    >>> print(m.group())
    Hello
    >>> print(m.string)
    Hello world
    >>> m.detach_string()
    >>> print(m.group())
    Hello
    >>> print(m.string)
    None
  • Characters in a group name (issue #14462)

    A group name can now contain the same characters as an identifier. These are different in Python 2 and Python 3.

  • Recursive patterns (Hg issue 27)

    Recursive and repeated patterns are supported.

    (?R) or (?0) tries to match the entire regex recursively. (?1), (?2), etc, try to match the relevant capture group.

    (?&name) tries to match the named capture group.

    Examples:

    >>> regex.match(r"(Tarzan|Jane) loves (?1)", "Tarzan loves Jane").groups()
    ('Tarzan',)
    >>> regex.match(r"(Tarzan|Jane) loves (?1)", "Jane loves Tarzan").groups()
    ('Jane',)
    
    >>> m = regex.search(r"(\w)(?:(?R)|(\w?))\1", "kayak")
    >>> m.group(0, 1, 2)
    ('kayak', 'k', None)

    The first two examples show how the subpattern within the capture group is reused, but is _not_ itself a capture group. In other words, "(Tarzan|Jane) loves (?1)" is equivalent to "(Tarzan|Jane) loves (?:Tarzan|Jane)".

    It’s possible to backtrack into a recursed or repeated group.

    You can’t call a group if there is more than one group with that group name or group number ("ambiguous group reference"). For example, (?P<foo>\w+) (?P<foo>\w+) (?&foo)? has 2 groups called “foo” (both group 1) and (?|([A-Z]+)|([0-9]+)) (?1)? has 2 groups with group number 1.

    The alternative forms (?P>name) and (?P&name) are also supported.

  • repr(regex) doesn’t include actual regex (issue #13592)

    The repr of a compiled regex is now in the form of a eval-able string. For example:

    >>> r = regex.compile("foo", regex.I)
    >>> repr(r)
    "regex.Regex('foo', flags=regex.I | regex.V0)"
    >>> r
    regex.Regex('foo', flags=regex.I | regex.V0)

    The regex module has Regex as an alias for the ‘compile’ function.

  • Improve the repr for regular expression match objects (issue #17087)

    The repr of a match object is now a more useful form. For example:

    >>> regex.search(r"\d+", "abc012def")
    <regex.Match object; span=(3, 6), match='012'>
  • Python lib re cannot handle Unicode properly due to narrow/wide bug (issue #12729)

    The source code of the regex module has been updated to support PEP 393 (“Flexible String Representation”), which is new in Python 3.3.

  • Full Unicode case-folding is supported.

    In version 1 behaviour, the regex module uses full case-folding when performing case-insensitive matches in Unicode.

    Examples (in Python 3):

    >>> regex.match(r"(?iV1)strasse", "stra\N{LATIN SMALL LETTER SHARP S}e").span()
    (0, 6)
    >>> regex.match(r"(?iV1)stra\N{LATIN SMALL LETTER SHARP S}e", "STRASSE").span()
    (0, 7)

    In version 0 behaviour, it uses simple case-folding for backward compatibility with the re module.

  • Approximate “fuzzy” matching (Hg issue 12, Hg issue 41, Hg issue 109)

    Regex usually attempts an exact match, but sometimes an approximate, or “fuzzy”, match is needed, for those cases where the text being searched may contain errors in the form of inserted, deleted or substituted characters.

    A fuzzy regex specifies which types of errors are permitted, and, optionally, either the minimum and maximum or only the maximum permitted number of each type. (You cannot specify only a minimum.)

    The 3 types of error are:

    • Insertion, indicated by “i”

    • Deletion, indicated by “d”

    • Substitution, indicated by “s”

    In addition, “e” indicates any type of error.

    The fuzziness of a regex item is specified between “{” and “}” after the item.

    Examples:

    • foo match “foo” exactly

    • (?:foo){i} match “foo”, permitting insertions

    • (?:foo){d} match “foo”, permitting deletions

    • (?:foo){s} match “foo”, permitting substitutions

    • (?:foo){i,s} match “foo”, permitting insertions and substitutions

    • (?:foo){e} match “foo”, permitting errors

    If a certain type of error is specified, then any type not specified will not be permitted.

    In the following examples I’ll omit the item and write only the fuzziness:

    • {i<=3} permit at most 3 insertions, but no other types

    • {d<=3} permit at most 3 deletions, but no other types

    • {s<=3} permit at most 3 substitutions, but no other types

    • {i<=1,s<=2} permit at most 1 insertion and at most 2 substitutions, but no deletions

    • {e<=3} permit at most 3 errors

    • {1<=e<=3} permit at least 1 and at most 3 errors

    • {i<=2,d<=2,e<=3} permit at most 2 insertions, at most 2 deletions, at most 3 errors in total, but no substitutions

    It’s also possible to state the costs of each type of error and the maximum permitted total cost.

    Examples:

    • {2i+2d+1s<=4} each insertion costs 2, each deletion costs 2, each substitution costs 1, the total cost must not exceed 4

    • {i<=1,d<=1,s<=1,2i+2d+1s<=4} at most 1 insertion, at most 1 deletion, at most 1 substitution; each insertion costs 2, each deletion costs 2, each substitution costs 1, the total cost must not exceed 4

    You can also use “<” instead of “<=” if you want an exclusive minimum or maximum:

    • {e<=3} permit up to 3 errors

    • {e<4} permit fewer than 4 errors

    • {0<e<4} permit more than 0 but fewer than 4 errors

    By default, fuzzy matching searches for the first match that meets the given constraints. The ENHANCEMATCH flag will cause it to attempt to improve the fit (i.e. reduce the number of errors) of the match that it has found.

    The BESTMATCH flag will make it search for the best match instead.

    Further examples to note:

    • regex.search("(dog){e}", "cat and dog")[1] returns "cat" because that matches "dog" with 3 errors, which is within the limit (an unlimited number of errors is permitted).

    • regex.search("(dog){e<=1}", "cat and dog")[1] returns " dog" (with a leading space) because that matches "dog" with 1 error, which is within the limit (1 error is permitted).

    • regex.search("(?e)(dog){e<=1}", "cat and dog")[1] returns "dog" (without a leading space) because the fuzzy search matches " dog" with 1 error, which is within the limit (1 error is permitted), and the (?e) then makes it attempt a better fit.

    In the first two examples there are perfect matches later in the string, but in neither case is it the first possible match.

    The match object has an attribute fuzzy_counts which gives the total number of substitutions, insertions and deletions.

    >>> # A 'raw' fuzzy match:
    >>> regex.fullmatch(r"(?:cats|cat){e<=1}", "cat").fuzzy_counts
    (0, 0, 1)
    >>> # 0 substitutions, 0 insertions, 1 deletion.
    
    >>> # A better match might be possible if the ENHANCEMATCH flag used:
    >>> regex.fullmatch(r"(?e)(?:cats|cat){e<=1}", "cat").fuzzy_counts
    (0, 0, 0)
    >>> # 0 substitutions, 0 insertions, 0 deletions.

    The match object also has an attribute fuzzy_changes which gives a tuple of the positions of the substitutions, insertions and deletions.

    >>> m = regex.search('(fuu){i<=2,d<=2,e<=5}', 'anaconda foo bar')
    >>> m
    <regex.Match object; span=(7, 10), match='a f', fuzzy_counts=(0, 2, 2)>
    >>> m.fuzzy_changes
    ([], [7, 8], [10, 11])

    What this means is that if the matched part of the string had been:

    'anacondfuuoo bar'

    it would’ve been an exact match.

    However, there were insertions at positions 7 and 8:

    'anaconda fuuoo bar'
            ^^

    and deletions at positions 10 and 11:

    'anaconda f~~oo bar'
               ^^

    So the actual string was:

    'anaconda foo bar'
  • Named lists (Hg issue 11)

    \L<name>

    There are occasions where you may want to include a list (actually, a set) of options in a regex.

    One way is to build the pattern like this:

    >>> p = regex.compile(r"first|second|third|fourth|fifth")

    but if the list is large, parsing the resulting regex can take considerable time, and care must also be taken that the strings are properly escaped if they contain any character that has a special meaning in a regex, and that if there is a shorter string that occurs initially in a longer string that the longer string is listed before the shorter one, for example, “cats” before “cat”.

    The new alternative is to use a named list:

    >>> option_set = ["first", "second", "third", "fourth", "fifth"]
    >>> p = regex.compile(r"\L<options>", options=option_set)

    The order of the items is irrelevant, they are treated as a set. The named lists are available as the .named_lists attribute of the pattern object :

    >>> print(p.named_lists)
    # Python 3
    {'options': frozenset({'fifth', 'first', 'fourth', 'second', 'third'})}
    # Python 2
    {'options': frozenset(['fifth', 'fourth', 'second', 'third', 'first'])}
  • Start and end of word

    \m matches at the start of a word.

    \M matches at the end of a word.

    Compare with \b, which matches at the start or end of a word.

  • Unicode line separators

    Normally the only line separator is \n (\x0A), but if the WORD flag is turned on then the line separators are the pair \x0D\x0A, and \x0A, \x0B, \x0C and \x0D, plus \x85, \u2028 and \u2029 when working with Unicode.

    This affects the regex dot ".", which, with the DOTALL flag turned off, matches any character except a line separator. It also affects the line anchors ^ and $ (in multiline mode).

  • Set operators

    Version 1 behaviour only

    Set operators have been added, and a set [...] can include nested sets.

    The operators, in order of increasing precedence, are:

    • || for union (“x||y” means “x or y”)

    • ~~ (double tilde) for symmetric difference (“x~~y” means “x or y, but not both”)

    • && for intersection (“x&&y” means “x and y”)

    • -- (double dash) for difference (“x–y” means “x but not y”)

    Implicit union, ie, simple juxtaposition like in [ab], has the highest precedence. Thus, [ab&&cd] is the same as [[a||b]&&[c||d]].

    Examples:

    • [ab] # Set containing ‘a’ and ‘b’

    • [a-z] # Set containing ‘a’ .. ‘z’

    • [[a-z]--[qw]] # Set containing ‘a’ .. ‘z’, but not ‘q’ or ‘w’

    • [a-z--qw] # Same as above

    • [\p{L}--QW] # Set containing all letters except ‘Q’ and ‘W’

    • [\p{N}--[0-9]] # Set containing all numbers except ‘0’ .. ‘9’

    • [\p{ASCII}&&\p{Letter}] # Set containing all characters which are ASCII and letter

  • regex.escape (issue #2650)

    regex.escape has an additional keyword parameter special_only. When True, only ‘special’ regex characters, such as ‘?’, are escaped.

    Examples:

    >>> regex.escape("foo!?")
    'foo!\\?'
    >>> regex.escape("foo!?", special_only=False)
    'foo\\!\\?'
    >>> regex.escape("foo!?", special_only=True)
    'foo!\\?'
  • regex.escape (Hg issue 249)

    regex.escape has an additional keyword parameter literal_spaces. When True, spaces are not escaped.

    Examples:

    >>> regex.escape("foo bar!?")
    'foo\\ bar!\\?'
    >>> regex.escape("foo bar!?", literal_spaces=False)
    'foo\\ bar!\\?'
    >>> regex.escape("foo bar!?", literal_spaces=True)
    'foo bar!\\?'
  • Repeated captures (issue #7132)

    A match object has additional methods which return information on all the successful matches of a repeated capture group. These methods are:

    • matchobject.captures([group1, ...])

      • Returns a list of the strings matched in a group or groups. Compare with matchobject.group([group1, ...]).

    • matchobject.starts([group])

      • Returns a list of the start positions. Compare with matchobject.start([group]).

    • matchobject.ends([group])

      • Returns a list of the end positions. Compare with matchobject.end([group]).

    • matchobject.spans([group])

      • Returns a list of the spans. Compare with matchobject.span([group]).

    Examples:

    >>> m = regex.search(r"(\w{3})+", "123456789")
    >>> m.group(1)
    '789'
    >>> m.captures(1)
    ['123', '456', '789']
    >>> m.start(1)
    6
    >>> m.starts(1)
    [0, 3, 6]
    >>> m.end(1)
    9
    >>> m.ends(1)
    [3, 6, 9]
    >>> m.span(1)
    (6, 9)
    >>> m.spans(1)
    [(0, 3), (3, 6), (6, 9)]
  • Atomic grouping (issue #433030)

    (?>...)

    If the following pattern subsequently fails, then the subpattern as a whole will fail.

  • Possessive quantifiers.

    (?:...)?+ ; (?:...)*+ ; (?:...)++ ; (?:...){min,max}+

    The subpattern is matched up to ‘max’ times. If the following pattern subsequently fails, then all of the repeated subpatterns will fail as a whole. For example, (?:...)++ is equivalent to (?>(?:...)+).

  • Scoped flags (issue #433028)

    (?flags-flags:...)

    The flags will apply only to the subpattern. Flags can be turned on or off.

  • Inline flags (issue #433024, issue #433027)

    (?flags-flags)

    Version 0 behaviour: the flags apply to the entire pattern, and they can’t be turned off.

    Version 1 behaviour: the flags apply to the end of the group or pattern, and they can be turned on or off.

  • Repeated repeats (issue #2537)

    A regex like ((x|y+)*)* will be accepted and will work correctly, but should complete more quickly.

  • Definition of ‘word’ character (issue #1693050)

    The definition of a ‘word’ character has been expanded for Unicode. It now conforms to the Unicode specification at http://www.unicode.org/reports/tr29/. This applies to \w, \W, \b and \B.

  • Groups in lookahead and lookbehind (issue #814253)

    Groups and group references are permitted in both lookahead and lookbehind.

  • Variable-length lookbehind

    A lookbehind can match a variable-length string.

  • Correct handling of charset with ignore case flag (issue #3511)

    Ranges within charsets are handled correctly when the ignore-case flag is turned on.

  • Unmatched group in replacement (issue #1519638)

    An unmatched group is treated as an empty string in a replacement template.

  • ‘Pathological’ patterns (issue #1566086, issue #1662581, issue #1448325, issue #1721518, issue #1297193)

    ‘Pathological’ patterns should complete more quickly.

  • Flags argument for regex.split, regex.sub and regex.subn (issue #3482)

    regex.split, regex.sub and regex.subn support a ‘flags’ argument.

  • Pos and endpos arguments for regex.sub and regex.subn

    regex.sub and regex.subn support ‘pos’ and ‘endpos’ arguments.

  • ‘Overlapped’ argument for regex.findall and regex.finditer

    regex.findall and regex.finditer support an ‘overlapped’ flag which permits overlapped matches.

  • Unicode escapes (issue #3665)

    The Unicode escapes \uxxxx and \Uxxxxxxxx are supported.

  • Large patterns (issue #1160)

    Patterns can be much larger.

  • Zero-width match with regex.finditer (issue #1647489)

    regex.finditer behaves correctly when it splits at a zero-width match.

  • Zero-width split with regex.split (issue #3262)

    Version 0 behaviour: same as re module (no split before Python 3.7).

    Version 1 behaviour: a string can be split at a zero-width match.

  • Splititer

    regex.splititer has been added. It’s a generator equivalent of regex.split.

  • Subscripting for groups

    A match object accepts access to the captured groups via subscripting and slicing:

    >>> m = regex.search(r"(?P<before>.*?)(?P<num>\d+)(?P<after>.*)", "pqr123stu")
    >>> print(m["before"])
    pqr
    >>> print(m["num"])
    123
    >>> print(m["after"])
    stu
    >>> print(len(m))
    4
    >>> print(m[:])
    ('pqr123stu', 'pqr', '123', 'stu')
  • Named groups

    Groups can be named with (?<name>...) as well as the current (?P<name>...).

  • Group references

    Groups can be referenced within a pattern with \g<name>. This also allows there to be more than 99 groups.

  • Named characters

    \N{name}

    Named characters are supported. (Note: only those known by Python’s Unicode database are supported.)

  • Unicode codepoint properties, including scripts and blocks

    \p{property=value}; \P{property=value}; \p{value} ; \P{value}

    Many Unicode properties are supported, including blocks and scripts. \p{property=value} or \p{property:value} matches a character whose property property has value value. The inverse of \p{property=value} is \P{property=value} or \p{^property=value}.

    If the short form \p{value} is used, the properties are checked in the order: General_Category, Script, Block, binary property:

    • Latin, the ‘Latin’ script (Script=Latin).

    • Cyrillic, the ‘Cyrillic’ script (Script=Cyrillic).

    • BasicLatin, the ‘BasicLatin’ block (Block=BasicLatin).

    • Alphabetic, the ‘Alphabetic’ binary property (Alphabetic=Yes).

    A short form starting with Is indicates a script or binary property:

    • IsLatin, the ‘Latin’ script (Script=Latin).

    • IsCyrillic, the ‘Cyrillic’ script (Script=Cyrillic).

    • IsAlphabetic, the ‘Alphabetic’ binary property (Alphabetic=Yes).

    A short form starting with In indicates a block property:

    • InBasicLatin, the ‘BasicLatin’ block (Block=BasicLatin).

    • InCyrillic, the ‘Cyrillic’ block (Block=Cyrillic).

  • POSIX character classes

    [[:alpha:]]; [[:^alpha:]]

    POSIX character classes are supported. These are normally treated as an alternative form of \p{...}.

    The exceptions are alnum, digit, punct and xdigit, whose definitions are different from those of Unicode.

    [[:alnum:]] is equivalent to \p{posix_alnum}.

    [[:digit:]] is equivalent to \p{posix_digit}.

    [[:punct:]] is equivalent to \p{posix_punct}.

    [[:xdigit:]] is equivalent to \p{posix_xdigit}.

  • Search anchor

    \G

    A search anchor has been added. It matches at the position where each search started/continued and can be used for contiguous matches or in negative variable-length lookbehinds to limit how far back the lookbehind goes:

    >>> regex.findall(r"\w{2}", "abcd ef")
    ['ab', 'cd', 'ef']
    >>> regex.findall(r"\G\w{2}", "abcd ef")
    ['ab', 'cd']
    • The search starts at position 0 and matches 2 letters ‘ab’.

    • The search continues at position 2 and matches 2 letters ‘cd’.

    • The search continues at position 4 and fails to match any letters.

    • The anchor stops the search start position from being advanced, so there are no more results.

  • Reverse searching

    Searches can now work backwards:

    >>> regex.findall(r".", "abc")
    ['a', 'b', 'c']
    >>> regex.findall(r"(?r).", "abc")
    ['c', 'b', 'a']

    Note: the result of a reverse search is not necessarily the reverse of a forward search:

    >>> regex.findall(r"..", "abcde")
    ['ab', 'cd']
    >>> regex.findall(r"(?r)..", "abcde")
    ['de', 'bc']
  • Matching a single grapheme

    \X

    The grapheme matcher is supported. It now conforms to the Unicode specification at http://www.unicode.org/reports/tr29/.

  • Branch reset

    (?|...|...)

    Capture group numbers will be reused across the alternatives, but groups with different names will have different group numbers.

    Examples:

    >>> regex.match(r"(?|(first)|(second))", "first").groups()
    ('first',)
    >>> regex.match(r"(?|(first)|(second))", "second").groups()
    ('second',)

    Note that there is only one group.

  • Default Unicode word boundary

    The WORD flag changes the definition of a ‘word boundary’ to that of a default Unicode word boundary. This applies to \b and \B.

  • SRE engine do not release the GIL (issue #1366311)

    The regex module can release the GIL during matching (see the above section on multithreading).

    Iterators can be safely shared across threads.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

regex-2017.12.12.tar.gz (612.6 kB view details)

Uploaded Source

Built Distributions

regex-2017.12.12-cp37-none-win_amd64.whl (263.9 kB view details)

Uploaded CPython 3.7Windows x86-64

regex-2017.12.12-cp37-none-win32.whl (257.4 kB view details)

Uploaded CPython 3.7Windows x86

regex-2017.12.12-cp36-none-win_amd64.whl (248.3 kB view details)

Uploaded CPython 3.6Windows x86-64

regex-2017.12.12-cp36-none-win32.whl (241.9 kB view details)

Uploaded CPython 3.6Windows x86

regex-2017.12.12-cp35-none-win_amd64.whl (248.3 kB view details)

Uploaded CPython 3.5Windows x86-64

regex-2017.12.12-cp35-none-win32.whl (241.9 kB view details)

Uploaded CPython 3.5Windows x86

regex-2017.12.12-cp34-none-win_amd64.whl (248.5 kB view details)

Uploaded CPython 3.4Windows x86-64

regex-2017.12.12-cp34-none-win32.whl (241.9 kB view details)

Uploaded CPython 3.4Windows x86

regex-2017.12.12-cp33-none-win_amd64.whl (248.4 kB view details)

Uploaded CPython 3.3Windows x86-64

regex-2017.12.12-cp33-none-win32.whl (241.7 kB view details)

Uploaded CPython 3.3Windows x86

regex-2017.12.12-cp27-none-win_amd64.whl (247.1 kB view details)

Uploaded CPython 2.7Windows x86-64

regex-2017.12.12-cp27-none-win32.whl (240.4 kB view details)

Uploaded CPython 2.7Windows x86

regex-2017.12.12-cp26-none-win_amd64.whl (247.1 kB view details)

Uploaded CPython 2.6Windows x86-64

regex-2017.12.12-cp26-none-win32.whl (240.4 kB view details)

Uploaded CPython 2.6Windows x86

File details

Details for the file regex-2017.12.12.tar.gz.

File metadata

  • Download URL: regex-2017.12.12.tar.gz
  • Upload date:
  • Size: 612.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for regex-2017.12.12.tar.gz
Algorithm Hash digest
SHA256 ee069308c2757e565cc2b6f417ba5288e76cfe4c1764b6826063f4fbd53219d7
MD5 dc75eac77421b615f412c004870ebfba
BLAKE2b-256 a38d234636c6869e7f02a53da61def354e6c5b3e1db443f8dbde3325fb933eda

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 89ca47786df9e41e43541821715f6a208a656a8a3a5bc171a8dd1359ee806579
MD5 e4cb71e5b5725e8c6db7b875ff09941c
BLAKE2b-256 9d48bf30a4315e1d610e4745aabf3d5801b0c58bbaa3ee046f210df9a521a73a

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp37-none-win32.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp37-none-win32.whl
Algorithm Hash digest
SHA256 fe228be0cc496e907d72fad9406ffac738ffb241590d8099871b52fc9ab8d23a
MD5 c9b0375e34b48d1b62d3c75cdbfcaf07
BLAKE2b-256 39b3533e00d23af86d307630b536b8aab843d742f5a6b01627b36824a540f662

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 9fe00437e12cb533341c6b30c1894b2a7e209c227f8ac6e6c93414ba145ea916
MD5 f064dc5e5c86c0bac4f7cfcb401e754b
BLAKE2b-256 30e1573032c848a1505d36feb4a53f5c2208591c1bc60221a704beca5d498b0f

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp36-none-win32.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp36-none-win32.whl
Algorithm Hash digest
SHA256 746f9edda5810693f64d21ab1eca06ef83edae35c58b5bf88a47d8033ad46005
MD5 d9bf73bbe9ff794bba3c94be7d452ec4
BLAKE2b-256 47bfe81a5117650420666d65600658d9bac8e458fda5d8140e8a594cff6c8473

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 cb9f16f3ac8347ee6897cd130c0a2806d6018e2c952db7d536baaac5db048da9
MD5 408678d6e582b0e801114c8c4b5ece0d
BLAKE2b-256 911a9274b1b37e4e65f45d3ba9de7ed7135889f1c7a7d48b2b2f8a95b1829c2d

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp35-none-win32.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp35-none-win32.whl
Algorithm Hash digest
SHA256 b0e3b3df11df39bbdc6a81bbafa6d1fa6a2d3c516bad626dea5c2a47a495f5d2
MD5 a351d0f6aca726e33830809cd4d9bf79
BLAKE2b-256 4b8dca04bd4513eedd2e34be5b47b021788e5a25b69e331ee257e1300a73a3c0

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 d03b7ae00708fe05f66d57b3e9f0f375477a3e0828657c745a56905be8873df5
MD5 b868738fad2e00ccdc7375a4ade163c5
BLAKE2b-256 edca185584a99c6e0c7f1b38fd87ab8d9641213eb02cfe036fb1e80e35cf138b

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp34-none-win32.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp34-none-win32.whl
Algorithm Hash digest
SHA256 d09999c744046b4935fa87296e0c713b6129d3a689e008f4ce3deab9bde37027
MD5 0bce9aeb82de00c47ba11228b695925a
BLAKE2b-256 6f90e2b2a69e7327a8f3a575d8e32d8d1e26cfbe04d6cc124a511d9aff976799

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp33-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp33-none-win_amd64.whl
Algorithm Hash digest
SHA256 b813ad96647ace4b30a8b5afaccf12d7d7ead8a01685d2aa3d90c24ed793228b
MD5 3ef98867a77d2c98cbd06234051974da
BLAKE2b-256 89273d4baf302dc53de7406b9d4822d1e5d005e79a2d2fcba5e0aed7a6160e89

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp33-none-win32.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp33-none-win32.whl
Algorithm Hash digest
SHA256 eaf5fe26482b7ac725af9dc74c711a7303a46b15c9953b22ed7132da48172dde
MD5 1446fcfa163505759f8abead786d0f89
BLAKE2b-256 72a5f4efd81cb3e3a48a5b9d1701474cc5efba3ba893952278b2b81e8134852d

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 a81567f88a2bf28de44e2a525bebb2088894734bcc42cdd66c3749e086a2bb56
MD5 a53481fddead4f4721be06bbefd13f5b
BLAKE2b-256 37af39ab7168ecbe4c8b7cf1baa4e11363e303f6eb8f4f9d184e8cdb7974edab

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp27-none-win32.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp27-none-win32.whl
Algorithm Hash digest
SHA256 91af45146e33beb5b3f3c7780d12b46a26c840b762d9f3575b4a97ba9948ad66
MD5 6c8e013c8681e696387d87cd2c884664
BLAKE2b-256 b7bb453ff2dd375848fd438d302d520264ef50556631d7b0ecd2efbd04767132

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp26-none-win_amd64.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp26-none-win_amd64.whl
Algorithm Hash digest
SHA256 7b52942613201a6360163d16f8d0c2d933f5ebc5c99081778f20da8fa82969d8
MD5 16386c21c30de56b5c970ce8dd422b05
BLAKE2b-256 8728e1c82f5acb4f6c241e5224ad2b61bbe689c1028efc8a75b2ee5d775501cd

See more details on using hashes here.

File details

Details for the file regex-2017.12.12-cp26-none-win32.whl.

File metadata

File hashes

Hashes for regex-2017.12.12-cp26-none-win32.whl
Algorithm Hash digest
SHA256 87bd6d8b8cd7b8cf6d1a197289a71ca94f6822e82c365fe5fc6ed6be8eedb444
MD5 0accd935e6ade948c897f4a682bd8918
BLAKE2b-256 ee4ecde837f05f6d2bf915eb8e481dbd082370a1a78d99fa2cdeedb83c0dda53

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page