Skip to main content

Register Synonyms

Project description

kwix

Developer Guide

Setup

# create conda environment
$ mamba env create -f env.yml

# update conda environment
$ mamba env update -n kwix --file env.yml

Install

pip install -e .

# install from pypi
pip install kwix

nbdev

# activate conda environment
$ conda activate kwix

# make sure the kwix package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to the kwix package
$ nbdev_prepare

Publishing

# publish to pypi
$ nbdev_pypi

# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'

Usage

Installation

Install latest from the GitHub repository:

$ pip install git+https://github.com/dsm-72/kwix.git

or from conda

$ conda install -c dsm-72 kwix

or from pypi

$ pip install kwix

Documentation

Documentation can be found hosted on GitHub repository pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.

Toy Inheritance

@dataclass
class Foo(KWix):
    _: KW_ONLY
    a: int = 1
    b: int = 2
    c: int = 3

@dataclass
class Qux(KWix):
    _: KW_ONLY
    q: str = -2
    u: str = -1
    x: int = 0
@dataclass
class Bar(Foo):
    _: KW_ONLY
    x: int = 7
    y: int = 8
    z: int = 9

@dataclass
class Baz(Bar, Qux):
    _: KW_ONLY
    a: int = 6
    b: int = 7
    q: int = 0

@dataclass
class Auz(Bar):
    _: KW_ONLY

Seaborn

Since Seaborn Clustermap passes all extra keyword-arguments to Heatmap using KWix can make it easy to know what these parameters are and easy to pass them accordingly

@dataclass
class SeabornHeatmap(KWix):
    _: KW_ONLY    
    # heatmap parameters
    vmin: Optional[float] = None
    vmax: Optional[float] = None
    cmap: Optional[str] = 'inferno'
    center: Optional[float] = None
    robust: bool = True
    annot: Optional[bool] = None
    fmt: Optional[str] = '.2g'
    annot_kws: Optional[dict] = None
    linewidths: Optional[float] = 0
    linecolor: Optional[str] = 'white'
    cbar: bool = True
    cbar_kws: Optional[dict] = None
    cbar_ax: Optional['Axes'] = None
    square: bool = False
    xticklabels: Union[bool, list, str, bool] = 'auto'
    yticklabels: Union[bool, list, str, bool] = 'auto'
    mask: Optional[Union['NPArray', 'DataFrame']] = None
    ax: Optional['Axes'] = None
@dataclass
class SeabornClustermap(SeabornHeatmap, KWix):
    _: KW_ONLY    
    # clustermap parameters
    pivot_kws: Optional[dict] = None
    method: 'LinkageMethod' = 'SINGLE'
    metric: 'PDistMetric' = 'CORRELATION'
    z_score: Optional[int] = 0
    standard_scale: Optional[int] = None
    figsize: Tuple[int, int] = (10, 10)
    cbar_kws: Optional[dict] = None
    row_cluster: bool = True
    col_cluster: bool = True
    row_linkage: Optional[dict] = None
    col_linkage: Optional[dict] = None
    row_colors: Optional[dict] = None
    col_colors: Optional[dict] = None
    mask: Optional[dict] = None
    dendrogram_ratio: float = 0.2
    colors_ratio: float = 0.03
    cbar_pos: 'CBarPos' = (0.02, 0.8, 0.05, 0.18)
    tree_kws: Optional[dict] = None
clstmap = SeabornClustermap()
clstmap.curvals()
{'cbar_kws': None,
 'cbar_pos': (0.02, 0.8, 0.05, 0.18),
 'col_cluster': True,
 'col_colors': None,
 'col_linkage': None,
 'colors_ratio': 0.03,
 'dendrogram_ratio': 0.2,
 'figsize': (10, 10),
 'mask': None,
 'method': 'SINGLE',
 'metric': 'CORRELATION',
 'pivot_kws': None,
 'row_cluster': True,
 'row_colors': None,
 'row_linkage': None,
 'standard_scale': None,
 'tree_kws': None,
 'z_score': 0}
clstmap.inhvals()
{'annot': None,
 'annot_kws': None,
 'ax': None,
 'cbar': True,
 'cbar_ax': None,
 'center': None,
 'cmap': 'inferno',
 'fmt': '.2g',
 'linecolor': 'white',
 'linewidths': 0,
 'robust': True,
 'square': False,
 'vmax': None,
 'vmin': None,
 'xticklabels': 'auto',
 'yticklabels': 'auto'}
clstmap.allvals()
{'annot': None,
 'annot_kws': None,
 'ax': None,
 'cbar': True,
 'cbar_ax': None,
 'cbar_kws': None,
 'cbar_pos': (0.02, 0.8, 0.05, 0.18),
 'center': None,
 'cmap': 'inferno',
 'col_cluster': True,
 'col_colors': None,
 'col_linkage': None,
 'colors_ratio': 0.03,
 'dendrogram_ratio': 0.2,
 'figsize': (10, 10),
 'fmt': '.2g',
 'linecolor': 'white',
 'linewidths': 0,
 'mask': None,
 'method': 'SINGLE',
 'metric': 'CORRELATION',
 'pivot_kws': None,
 'robust': True,
 'row_cluster': True,
 'row_colors': None,
 'row_linkage': None,
 'square': False,
 'standard_scale': None,
 'tree_kws': None,
 'vmax': None,
 'vmin': None,
 'xticklabels': 'auto',
 'yticklabels': 'auto',
 'z_score': 0}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

regsyn-0.0.3.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

regsyn-0.0.3-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file regsyn-0.0.3.tar.gz.

File metadata

  • Download URL: regsyn-0.0.3.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for regsyn-0.0.3.tar.gz
Algorithm Hash digest
SHA256 60557c502eef168629b44bcc03d3786d1dacf9bd60aeb96ac614469349e63fe6
MD5 a4acd67f11bebfe602633df66b78f521
BLAKE2b-256 425122979dfe5d37a72c29afc33577f3c5a760dbb2acfbf07c4b01e436594886

See more details on using hashes here.

File details

Details for the file regsyn-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: regsyn-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for regsyn-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f27e6f3bc8220789871c668c408fcd97ff3cc76053368fef717e8124c4738246
MD5 5150c3f879b1597439f579400bd356f2
BLAKE2b-256 6b06f021789a7cda66f7e263fa36ecaa5a63dd033f520c3709ea6121186480fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page