Skip to main content

RelBERT: the state-of-the-art lexical relation embedding model.

Project description

license PyPI version PyPI pyversions PyPI status

RelBERT

We release the package relbert that includes the official implementation of Distilling Relation Embeddings from Pre-trained Language Models which has been accepted by the EMNLP 2021 main conference (check the camera-ready version here).

What's RelBERT?

RelBERT is the state-of-the-art lexical relation embedding model based on large scale pretrained masked language models that establishes a very strong baseline in analogy question in zeroshot transfer and even outperform fewshot models such as GPT-3 and Analogical Proportion (AP).

SAT (full) SAT U2 U4 Google BATS
GloVe 48.9 47.8 46.5 39.8 96 68.7
FastText 49.7 47.8 43 40.7 96.6 72
RELATIVE 24.9 24.6 32.5 27.1 62 39
pair2vec 33.7 34.1 25.4 28.2 66.6 53.8
GPT-2 (AP) 41.4 35.9 41.2 44.9 80.4 63.5
RoBERTa (AP) 49.6 42.4 49.1 49.1 90.8 69.7
GPT-2 (tuned AP) 57.8 56.7 50.9 49.5 95.2 81.2
RoBERTa (tuned AP) 55.8 53.4 58.3 57.4 93.6 78.4
GPT3 (zeroshot) 53.7 - - - - -
GPT3 (fewshot) 53.7 - - - - -
RelBERT 69.5 70.6 66.2 65.3 92.4 78.8

Please have a look our paper to know more about RelBERT and AnalogyTool or AP paper for more information about the analogy question datasets.

What can we do with relbert?

In this repository, we release a python package relbert to work around with RelBERT and its checkpoints via huggingface modelhub and gensim. In brief, what you can do with the relbert are summarized as below:

  • Get a high quality embedding vector given a pair of word
  • Get similar word pairs (nearest neighbors)
  • Reproduce the results of our EMNLP 2021 paper.

Get Started

pip install relbert

Play with RelBERT

RelBERT can give you a high-quality relation embedding vector of a word pair. First, you need to define the model class with a RelBERT checkpoint.

from relbert import RelBERT
model = RelBERT('asahi417/relbert-roberta-large')

As the model checkpoint, we release following three models on the huggingface modelhub.

Then you give a list of word to the model to get the embedding.

# the vector has (1024,)
v_tokyo_japan = model.get_embedding(['Tokyo', 'Japan'])

Let's run a quick experiment to check the embedding quality. Given candidate lists ['Paris', 'France'], ['music', 'pizza'], and ['London', 'Tokyo'], the pair which shares the same relation with the ['Tokyo', 'Japan'] is ['Paris', 'France']. Would the RelBERT embedding be possible to retain it with simple cosine similarity?

from relbert import euclidean_distance
v_paris_france, v_music_pizza, v_london_tokyo = model.get_embedding([['Paris', 'France'], ['music', 'pizza'], ['London', 'Tokyo']])
euclidean_distance(v_tokyo_japan, v_paris_france)
>>> 18.8
euclidean_distance(v_tokyo_japan, v_music_pizza)
>>> 100.7
euclidean_distance(v_tokyo_japan, v_london_tokyo)
>>> 67.8

Bravo! The distance between ['Tokyo', 'Japan'] and ['Paris', 'France'] is the closest among the candidates.

Nearest Neighbours of RelBERT

To get the similar word pairs in terms of the RelBERT embedding, we convert the RelBERT embedding to a gensim model file with a fixed vocabulary. Specifically, we take the vocabulary of the RELATIVE embedding that is released as a part of Analogy Tool, and generate the embedding for all the word pairs with RelBERT (asahi417/relbert-roberta-large). Following the original vocabulary representation, words are joined by __ and multiple token should be combined by _ such as New_york__Tokyo.

The RelBERT embedding gensim file can be found here. For example, you can get the nearest neighbours as below.

from gensim.models import KeyedVectors
model = KeyedVectors.load_word2vec_format('gensim_model.bin', binary=True)
model.most_similar('Tokyo__Japan')
>>>  [('Moscow__Russia', 0.9997282028198242),
      ('Cairo__Egypt', 0.9997045993804932),
      ('Baghdad__Iraq', 0.9997043013572693),
      ('Helsinki__Finland', 0.9996970891952515),
      ('Paris__France', 0.999695897102356),
      ('Damascus__Syria', 0.9996891617774963),
      ('Bangkok__Thailand', 0.9996803998947144),
      ('Madrid__Spain', 0.9996673464775085),
      ('Budapest__Hungary', 0.9996543526649475),
      ('Beijing__China', 0.9996539354324341)]

Reproduce the Experiments

To reproduce the experimental result of our EMNLP 2021 paper, you have to clone the repository.

git clone https://github.com/asahi417/relbert
cd relbert
pip install .

First, you need to compute prompts for AutoPrompt and P-tuning.

sh ./examples/experiments/main/prompt.sh

Then, you can train RelBERT model.

sh ./examples/experiments/main/train.sh

Once models are trained, you can evaluate them.

sh ./examples/experiments/main/evaluate.sh

Citation

If you use any of these resources, please cite the following paper:

@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
    title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
    author = "Ushio, Asahi  and
      Schockaert, Steven  and
      Camacho-Collados, Jose",
    booktitle = "EMNLP 2021",
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

relbert-0.1.0.tar.gz (28.2 kB view details)

Uploaded Source

File details

Details for the file relbert-0.1.0.tar.gz.

File metadata

  • Download URL: relbert-0.1.0.tar.gz
  • Upload date:
  • Size: 28.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for relbert-0.1.0.tar.gz
Algorithm Hash digest
SHA256 12d90966c884ade5409e046add1b2aca55bcfbc816c2ea9f8f13756d8fa44e94
MD5 a86c5470c397591425183c6aecee2bff
BLAKE2b-256 dbc8f2631b9c60dc1c2b434c45cf89235a3fb830318daf9a2bd4bc16789dcb38

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page