Skip to main content

Python library for the ReLDI API

Project description

# The ReLDI web services library

This repository contains the documentation and some handy scripts for using the ReLDI web services library. For gaining access to the ReLDI web services please visit [http://clarin.si/services/web/](http://clarin.si/services/web/).

[ReLDI](https://reldi.spur.uzh.ch) is a SNSF-funded SCOPES project under which a series of resources and tools for processing South-Slavic languages were developed.

Some of the tools available through the library / web services were developed inside the [JANES](http://nl.ijs.si/janes/) and [CLARIN.SI](https://www.clarin.si) projects.

Most of the tools wrapped in the web service are available from GitHub via the [CLARIN.SI organisation](https://github.com/clarinsi/).

The papers describing specific technologies (that should be cited if the technology is used) are the following:

- diacritic restoration: Corpus-Based Diacritic Restoration for South Slavic Languages [[pdf]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16-corpus.pdf) [[bib]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16-corpus.txt)
- tagging: Corpus vs. Lexicon Supervision in Morphosyntactic Tagging: the Case of Slovene [[pdf]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16b-corpus.pdf) [[bib]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16b-corpus.txt), New Inflectional Lexicons and Training Corpora for Improved Morphosyntactic Annotation of Croatian and Serbian [[pdf]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16-new.pdf) [[bib]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16-new.txt)
- dependency parsing: Universal Dependencies for Croatian (that Work for Serbian, too) [[pdf]](http://nlp.ffzg.hr/data/publications/nljubesi/agic15-universal.pdf) [[bib]](http://nlp.ffzg.hr/data/publications/nljubesi/agic15-universal.txt)
- named entity recognition: based on the [[janes-ner]](https://github.com/clarinsi/janes-ner) NER tagger

## Installing the library

The easiest way to install the ReLDI library is through [PyPI](https://pypi.python.org/pypi) from your command line interface.

```
$ sudo pip install reldi
```

## Using the library

### Scripts

The easiest way to use the library is through two handy scripts available from this repository.

If you require diacritic restoration, you want to use the ```restore_all.py``` script.

```
$ python restore_all.py hr examples/example.txt
```

You can observe the output of the script in the file ```examples/example.txt.redi```. Notice that batch file processing is available as well by giving a directory as the second argument, e.g., ```python restore_all.py hr examples/```, which will process all files in the defined directory with the extension ```.txt```. You can get more info by running ```$ python restore_all.py -h```.

If you require tokenisation, morphosyntactic tagging and / or lemmatisation, you will want to use the ```tag_all.py``` script.

```
$ python tag_all.py hr examples/example.txt.redi
```

You can inspect the output of the script in the file ```examples/example.txt.redi.taglem```.

If you require named entity recognition with morphosyntactic tagging and lemmatisation, you will use the ```ner_all.py``` script.

```
$ python ner_all.py hr examples/example.txt.redi
```

You can inspect the output of the script in the file ```examples/example.txt.redi.tagNERlem```.

If you require dependency parsing as well, you can use the ```parse_all.py``` script.

```
$ python parse_all.py hr examples/example.txt.redi
```

The output of this script is available in the file ```examples/example.txt.redi.parse```. The interface of all three scripts scripts is very similar.

### Library

If you want to use the web service responses in your own code, you probably want to use the library directly. Below we are giving simple examples of the diacritic restorer and the tokeniser / tagger / lemmatiser from the Python interactive mode:

```
>>> import json
>>> from reldi.restorer import DiacriticRestorer
>>> dr=DiacriticRestorer('hr')
>>> dr.authorize('my_username','my_password')
>>> json.loads(dr.restore('Cudil bi se da ovo dela.'))
{'orthography': [{'tokenIDs': 't_0', 'ID': 'pt_0', 'value': '\xc4\x8cudil'}, {'tokenIDs': 't_1', 'ID': 'pt_1', 'value': 'bi'}, {'tokenIDs': 't_2', 'ID': 'pt_2', 'value': 'se'}, {'tokenIDs': 't_3', 'ID': 'pt_3', 'value': 'da'}, {'tokenIDs': 't_4', 'ID': 'pt_4', 'value': 'ovo'}, {'tokenIDs': 't_5', 'ID': 'pt_5', 'value': 'dela'}, {'tokenIDs': 't_6', 'ID': 'pt_6', 'value': '.'}], 'text': 'Cudil bi se da ovo dela.', 'tokens': [{'endChar': '5', 'startChar': '1', 'ID': 't_0', 'value': 'Cudil'}, {'endChar': '8', 'startChar': '7', 'ID': 't_1', 'value': 'bi'}, {'endChar': '11', 'startChar': '10', 'ID': 't_2', 'value': 'se'}, {'endChar': '14', 'startChar': '13', 'ID': 't_3', 'value': 'da'}, {'endChar': '18', 'startChar': '16', 'ID': 't_4', 'value': 'ovo'}, {'endChar': '23', 'startChar': '20', 'ID': 't_5', 'value': 'dela'}, {'endChar': '24', 'startChar': '24', 'ID': 't_6', 'value': '.'}], 'sentences': [{'tokenIDs': 't_0 t_1 t_2 t_3 t_4 t_5 t_6', 'ID': 's_0'}]}

>>> from reldi.tagger import Tagger
>>> t=Tagger('hr')
>>> t.authorize('my_username','my_password')
>>> json.loads(t.tagLemmatise(u'Ovi alati rade dobro.'.encode('utf8')))
{'tokens': [{'endChar': '3', 'startChar': '1', 'ID': 't_0', 'value': 'Ovi'}, {'endChar': '9', 'startChar': '5', 'ID': 't_1', 'value': 'alati'}, {'endChar': '14', 'startChar': '11', 'ID': 't_2', 'value': 'rade'}, {'endChar': '20', 'startChar': '16', 'ID': 't_3', 'value': 'dobro'}, {'endChar': '21', 'startChar': '21', 'ID': 't_4', 'value': '.'}], 'lemmas': [{'tokenIDs': 't_0', 'ID': 'le_0', 'value': 'ovaj'}, {'tokenIDs': 't_1', 'ID': 'le_1', 'value': 'alat'}, {'tokenIDs': 't_2', 'ID': 'le_2', 'value': 'raditi'}, {'tokenIDs': 't_3', 'ID': 'le_3', 'value': 'dobro'}, {'tokenIDs': 't_4', 'ID': 'le_4', 'value': '.'}], 'text': 'Ovi alati rade dobro.', 'POSTags': [{'tokenIDs': 't_0', 'ID': 'pt_0', 'value': 'Pd-mpn'}, {'tokenIDs': 't_1', 'ID': 'pt_1', 'value': 'Ncmpn'}, {'tokenIDs': 't_2', 'ID': 'pt_2', 'value': 'Vmr3p'}, {'tokenIDs': 't_3', 'ID': 'pt_3', 'value': 'Rgp'}, {'tokenIDs': 't_4', 'ID': 'pt_4', 'value': 'Z'}], 'sentences': [{'tokenIDs': 't_0 t_1 t_2 t_3 t_4', 'ID': 's_0'}]}

>>> from reldi.parser import Parser
>>> p=Parser('hr')
>>> p.authorize('my_username','my_password')
>>> json.loads(p.tagLemmatiseParse(u'Ovi alati rade dobro.'.encode('utf8')))

>>> from reldi.ner_tagger import NERTagger
>>> n=NERTagger('hr')
>>> n.authorize('my_username','my_password')
>>> json.loads(n.tag(u'Ovi alati u Sloveniji rade dobro.'.encode('utf8')))

>>> from reldi.lexicon import Lexicon
>>> lex=Lexicon('hr')
>>> lex.authorize('my_username','my_password')
>>> json.loads(lex.queryEntries(surface="pet"))
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

reldi-1.8.tar.gz (9.8 kB view details)

Uploaded Source

File details

Details for the file reldi-1.8.tar.gz.

File metadata

  • Download URL: reldi-1.8.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/2.7

File hashes

Hashes for reldi-1.8.tar.gz
Algorithm Hash digest
SHA256 7ca734f5ef549e09d281e4956f97bcb7e108926a3831b5938095f0adf87533be
MD5 edcceb73cff69a5446de028047fd2d04
BLAKE2b-256 e736a8fa8b25eea6963624891b169dac1aaaac647aa09eebe4a256e83badcfb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page