Skip to main content

Python library for the ReLDI API

Project description

# The ReLDI web services library

This repository contains the documentation and some handy scripts for using the ReLDI web services library. For gaining access to the ReLDI web services please visit [http://clarin.si/services/web/](http://clarin.si/services/web/).

[ReLDI](https://reldi.spur.uzh.ch) is a SNSF-funded SCOPES project under which a series of resources and tools for processing South-Slavic languages were developed.

Some of the tools available through the library / web services were developed inside the [JANES](http://nl.ijs.si/janes/) and [CLARIN.SI](https://www.clarin.si) projects.

Most of the tools wrapped in the web service are available from GitHub via the [CLARIN.SI organisation](https://github.com/clarinsi/).

The papers describing specific technologies (that should be cited if the technology is used) are the following:

- diacritic restoration: Corpus-Based Diacritic Restoration for South Slavic Languages [[pdf]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16-corpus.pdf) [[bib]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16-corpus.txt)
- tagging: Corpus vs. Lexicon Supervision in Morphosyntactic Tagging: the Case of Slovene [[pdf]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16b-corpus.pdf) [[bib]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16b-corpus.txt), New Inflectional Lexicons and Training Corpora for Improved Morphosyntactic Annotation of Croatian and Serbian [[pdf]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16-new.pdf) [[bib]](http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic16-new.txt)
- dependency parsing: Universal Dependencies for Croatian (that Work for Serbian, too) [[pdf]](http://nlp.ffzg.hr/data/publications/nljubesi/agic15-universal.pdf) [[bib]](http://nlp.ffzg.hr/data/publications/nljubesi/agic15-universal.txt)
- named entity recognition: based on the [[janes-ner]](https://github.com/clarinsi/janes-ner) NER tagger

## Installing the library

The easiest way to install the ReLDI library is through [PyPI](https://pypi.python.org/pypi) from your command line interface.

```
$ sudo pip install reldi
```

## Using the library

### Scripts

The easiest way to use the library is through two handy scripts available from this repository.

If you require diacritic restoration, you want to use the ```restore_all.py``` script.

```
$ python restore_all.py hr examples/example.txt
```

You can observe the output of the script in the file ```examples/example.txt.redi```. Notice that batch file processing is available as well by giving a directory as the second argument, e.g., ```python restore_all.py hr examples/```, which will process all files in the defined directory with the extension ```.txt```. You can get more info by running ```$ python restore_all.py -h```.

If you require tokenisation, morphosyntactic tagging and / or lemmatisation, you will want to use the ```tag_all.py``` script.

```
$ python tag_all.py hr examples/example.txt.redi
```

You can inspect the output of the script in the file ```examples/example.txt.redi.taglem```.

If you require named entity recognition with morphosyntactic tagging and lemmatisation, you will use the ```ner_all.py``` script.

```
$ python ner_all.py hr examples/example.txt.redi
```

You can inspect the output of the script in the file ```examples/example.txt.redi.tagNERlem```.

If you require dependency parsing as well, you can use the ```parse_all.py``` script.

```
$ python parse_all.py hr examples/example.txt.redi
```

The output of this script is available in the file ```examples/example.txt.redi.parse```. The interface of all three scripts scripts is very similar.

### Library

If you want to use the web service responses in your own code, you probably want to use the library directly. Below we are giving simple examples of the diacritic restorer and the tokeniser / tagger / lemmatiser from the Python interactive mode:

```
>>> import json
>>> from reldi.restorer import DiacriticRestorer
>>> dr=DiacriticRestorer('hr')
>>> dr.authorize('my_username','my_password')
>>> json.loads(dr.restore('Cudil bi se da ovo dela.'))
{'orthography': [{'tokenIDs': 't_0', 'ID': 'pt_0', 'value': '\xc4\x8cudil'}, {'tokenIDs': 't_1', 'ID': 'pt_1', 'value': 'bi'}, {'tokenIDs': 't_2', 'ID': 'pt_2', 'value': 'se'}, {'tokenIDs': 't_3', 'ID': 'pt_3', 'value': 'da'}, {'tokenIDs': 't_4', 'ID': 'pt_4', 'value': 'ovo'}, {'tokenIDs': 't_5', 'ID': 'pt_5', 'value': 'dela'}, {'tokenIDs': 't_6', 'ID': 'pt_6', 'value': '.'}], 'text': 'Cudil bi se da ovo dela.', 'tokens': [{'endChar': '5', 'startChar': '1', 'ID': 't_0', 'value': 'Cudil'}, {'endChar': '8', 'startChar': '7', 'ID': 't_1', 'value': 'bi'}, {'endChar': '11', 'startChar': '10', 'ID': 't_2', 'value': 'se'}, {'endChar': '14', 'startChar': '13', 'ID': 't_3', 'value': 'da'}, {'endChar': '18', 'startChar': '16', 'ID': 't_4', 'value': 'ovo'}, {'endChar': '23', 'startChar': '20', 'ID': 't_5', 'value': 'dela'}, {'endChar': '24', 'startChar': '24', 'ID': 't_6', 'value': '.'}], 'sentences': [{'tokenIDs': 't_0 t_1 t_2 t_3 t_4 t_5 t_6', 'ID': 's_0'}]}

>>> from reldi.tagger import Tagger
>>> t=Tagger('hr')
>>> t.authorize('my_username','my_password')
>>> json.loads(t.tagLemmatise(u'Ovi alati rade dobro.'.encode('utf8')))
{'tokens': [{'endChar': '3', 'startChar': '1', 'ID': 't_0', 'value': 'Ovi'}, {'endChar': '9', 'startChar': '5', 'ID': 't_1', 'value': 'alati'}, {'endChar': '14', 'startChar': '11', 'ID': 't_2', 'value': 'rade'}, {'endChar': '20', 'startChar': '16', 'ID': 't_3', 'value': 'dobro'}, {'endChar': '21', 'startChar': '21', 'ID': 't_4', 'value': '.'}], 'lemmas': [{'tokenIDs': 't_0', 'ID': 'le_0', 'value': 'ovaj'}, {'tokenIDs': 't_1', 'ID': 'le_1', 'value': 'alat'}, {'tokenIDs': 't_2', 'ID': 'le_2', 'value': 'raditi'}, {'tokenIDs': 't_3', 'ID': 'le_3', 'value': 'dobro'}, {'tokenIDs': 't_4', 'ID': 'le_4', 'value': '.'}], 'text': 'Ovi alati rade dobro.', 'POSTags': [{'tokenIDs': 't_0', 'ID': 'pt_0', 'value': 'Pd-mpn'}, {'tokenIDs': 't_1', 'ID': 'pt_1', 'value': 'Ncmpn'}, {'tokenIDs': 't_2', 'ID': 'pt_2', 'value': 'Vmr3p'}, {'tokenIDs': 't_3', 'ID': 'pt_3', 'value': 'Rgp'}, {'tokenIDs': 't_4', 'ID': 'pt_4', 'value': 'Z'}], 'sentences': [{'tokenIDs': 't_0 t_1 t_2 t_3 t_4', 'ID': 's_0'}]}

>>> from reldi.parser import Parser
>>> p=Parser('hr')
>>> p.authorize('my_username','my_password')
>>> json.loads(p.tagLemmatiseParse(u'Ovi alati rade dobro.'.encode('utf8')))

>>> from reldi.ner_tagger import NERTagger
>>> n=NERTagger('hr')
>>> n.authorize('my_username','my_password')
>>> json.loads(n.tag(u'Ovi alati u Sloveniji rade dobro.'.encode('utf8')))

>>> from reldi.lexicon import Lexicon
>>> lex=Lexicon('hr')
>>> lex.authorize('my_username','my_password')
>>> json.loads(lex.queryEntries(surface="pet"))
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
reldi-1.8.tar.gz (9.8 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page