Skip to main content

No project description provided

Project description

Github Banner

Documentation Status License

For guides, tutorials on how to use this package, visit https://docs.relevance.ai/docs.

🔥 Features

Features of the library include:

  • Quick vector search with free dashboard to preview results
  • Vector clustering with support with built-in easy customisation
  • Multi-vector search with filtering, facets, weighting
  • Hybrid search (weighting exact text matching and vector search together) ... and more!

🧠 Documentation

There are two main ways of documentations to take a look at:

API type Link
Guides Documentation
Python Reference Documentation

🛠️ Installation

pip install -U relevanceai

Or you can install it via conda to:

conda install pip 
pip install -c relevanceai

You can also install on conda (only available on Linux environments at the moment): conda install -c relevance relevanceai.

⏩ Quickstart

Login into your project space

from relevanceai import Client 

client = relevanceai.Client(<project_name>, <api_key>)

This is a data example in the right format to be uploaded to relevanceai. Every document you upload should:

  • Be a list of dictionaries
  • Every dictionary has a field called _id
  • Vector fields end in vector
docs = [
    {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
    {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
    {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
    {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
    {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]

Upload data into a new dataset

The documents will be uploaded into a new dataset that you can name in whichever way you want. If the dataset name does not exist yet, it will be created automatically. If the dataset already exist, the uploaded _id will be replacing the old data.

client.insert_documents(dataset_id="quickstart", docs=docs)

Perform a vector search

client.services.search.vector(
    dataset_id="quickstart", 
    multivector_query=[
        {"vector": [0.2, 0.2, 0.2], "fields": ["example_vector_"]},
    ],
    page_size=3,
    query="sample search" # Stored on the dashboard but not required

🚧 Development

Getting Started

To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.

python -m pip install pytest mypy

Then run testing using:

Make sure to set your test credentials!

export TEST_PROJECT = xxx 
export TEST_API_KEY = xxx 

python -m pytest
mypy relevanceai

🧰 Config

The config contains the adjustable global settings for the SDK. For a description of all the settings, see here.

To view setting options, run the following:

client.config.options

The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:

client.config.set_option('logging.enable_logging', False)

To restore all options to their default, run the following:

Changing the base URL

You can change the base URL as such:

client.base_url = "https://.../latest"

You can also update the ingest base URL:

client.ingest_base_url = "https://.../latest

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RelevanceAI-0.28.1.tar.gz (80.7 kB view details)

Uploaded Source

Built Distribution

RelevanceAI-0.28.1-py3-none-any.whl (107.7 kB view details)

Uploaded Python 3

File details

Details for the file RelevanceAI-0.28.1.tar.gz.

File metadata

  • Download URL: RelevanceAI-0.28.1.tar.gz
  • Upload date:
  • Size: 80.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for RelevanceAI-0.28.1.tar.gz
Algorithm Hash digest
SHA256 95395aa74362a53c0232a82da07f2fb12ca2a0e30774af0a02c85a62a92cf8e7
MD5 7294a714d93a4a802952ebbe33787c99
BLAKE2b-256 72454eaf4a553d1435646758d89c0499784ddc15ff8d9072af56d949c3cfe62f

See more details on using hashes here.

File details

Details for the file RelevanceAI-0.28.1-py3-none-any.whl.

File metadata

  • Download URL: RelevanceAI-0.28.1-py3-none-any.whl
  • Upload date:
  • Size: 107.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for RelevanceAI-0.28.1-py3-none-any.whl
Algorithm Hash digest
SHA256 43c9c60dad5086150125522a2e20bb6cbb7cac9a8a913a117941344af4285412
MD5 7aa0fbda5159deb4f2765dd985ece85e
BLAKE2b-256 9e67302b4a8be3dc46ea67727189cd0e50a1e88e3b605e1efbeccf654d797b38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page