Skip to main content

No project description provided

Project description

Github Banner

Documentation Status License

For guides, tutorials on how to use this package, visit https://docs.relevance.ai/docs.

🔥 Features

Features of the library include:

  • Quick vector search with free dashboard to preview results
  • Vector clustering with support with built-in easy customisation
  • Multi-vector search with filtering, facets, weighting
  • Hybrid search (weighting exact text matching and vector search together) ... and more!

🧠 Documentation

There are two main ways of documentations to take a look at:

API type Link
Guides Documentation
Python Reference Documentation

🛠️ Installation

pip install -U relevanceai

Or you can install it via conda to:

conda install pip 
pip install -c relevanceai

You can also install on conda (only available on Linux environments at the moment): conda install -c relevance relevanceai.

⏩ Quickstart

Login into your project space

from relevanceai import Client 

client = relevanceai.Client(<project_name>, <api_key>)

This is a data example in the right format to be uploaded to relevanceai. Every document you upload should:

  • Be a list of dictionaries
  • Every dictionary has a field called _id
  • Vector fields end in vector
docs = [
    {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
    {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
    {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
    {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
    {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]

Upload data into a new dataset

The documents will be uploaded into a new dataset that you can name in whichever way you want. If the dataset name does not exist yet, it will be created automatically. If the dataset already exist, the uploaded _id will be replacing the old data.

client.insert_documents(dataset_id="quickstart", docs=docs)

Perform a vector search

client.services.search.vector(
    dataset_id="quickstart", 
    multivector_query=[
        {"vector": [0.2, 0.2, 0.2], "fields": ["example_vector_"]},
    ],
    page_size=3,
    query="sample search" # Stored on the dashboard but not required

🚧 Development

Getting Started

To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.

python -m pip install pytest mypy

Then run testing using:

Make sure to set your test credentials!

export TEST_PROJECT = xxx 
export TEST_API_KEY = xxx 

python -m pytest
mypy relevanceai

🧰 Config

The config contains the adjustable global settings for the SDK. For a description of all the settings, see here.

To view setting options, run the following:

client.config.options

The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:

client.config.set_option('logging.enable_logging', False)

To restore all options to their default, run the following:

Changing the base URL

You can change the base URL as such:

client.base_url = "https://.../latest"

You can also update the ingest base URL:

client.ingest_base_url = "https://.../latest

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RelevanceAI-0.29.0.tar.gz (99.4 kB view details)

Uploaded Source

Built Distribution

RelevanceAI-0.29.0-py3-none-any.whl (132.0 kB view details)

Uploaded Python 3

File details

Details for the file RelevanceAI-0.29.0.tar.gz.

File metadata

  • Download URL: RelevanceAI-0.29.0.tar.gz
  • Upload date:
  • Size: 99.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for RelevanceAI-0.29.0.tar.gz
Algorithm Hash digest
SHA256 e28d85a43a6c54533006b75bb4dd5453afc6bab4b98a48c503222581232affd4
MD5 a09ca8df8b77a0712e9b586a667164a7
BLAKE2b-256 8abb0388bfc36ec8abe08e24c147af0a927b06dc7d8ebc9899cc1d4ae3bf86a8

See more details on using hashes here.

File details

Details for the file RelevanceAI-0.29.0-py3-none-any.whl.

File metadata

  • Download URL: RelevanceAI-0.29.0-py3-none-any.whl
  • Upload date:
  • Size: 132.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for RelevanceAI-0.29.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8d22d7fc938f1fc20d99a52c6b259c08f066fc2a1f24285d53346256ad5baea7
MD5 d6cb6b82be0f44b3fc6300086a1b119e
BLAKE2b-256 62dbd4fa77f640487f488aad4f28cb7d57a84aa5929715840589d46df7d83177

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page