Skip to main content

No project description provided

Project description

Github Banner

Documentation Status License

Join our slack channel!

Run Our Colab Notebook And Get Started In Less Than 10 Lines Of Code!

Open In Colab

For guides and tutorials on how to use this package, visit https://docs.relevance.ai/docs.

🔥 Features

  • Fast vector search with free dashboard to preview and visualise results
  • Vector clustering with support for libraries like scikit-learn and easy built-in customisation
  • Store nested documents with support for multiple vectors and metadata in one object
  • Multi-vector search with filtering, facets, weighting
  • Hybrid search with support for weighting keyword matching and vector search ... and more!

🧠 Documentation

API type Link
Guides Documentation
Python Reference Documentation

You can easily access our documentation while using the SDK using:

from relevanceai import Client
client = Client()

# Easy one line of code to access our docs
client.docs

🛠️ Installation

Using pip:

pip install -U relevanceai

Using conda:

conda install -c relevance relevanceai

⏩ Quickstart

Login into your project space

from relevanceai import Client

client = Client(<project_name>, <api_key>)

Prepare your documents for insertion by following the below format:

  • Each document should be a dictionary
  • Include a field _id as a primary key, otherwise it's automatically generated
  • Suffix vector fields with _vector_
docs = [
    {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
    {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
    {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
    {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
    {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]

Insert data into a dataset

Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you.

Quick tip! Our Dataset object is compatible with common dataframes methods like .head(), .shape() and .info().

ds = client.Dataset("quickstart")
ds.insert_documents(docs)

Perform vector search

results = ds.vector_search(
    multivector_query=[{"vector": [0.2, 0.2, 0.2], "fields": ["example_vector_"]}],
    page_size=3,
    query="sample search" # optional, name to display in dashboard
)

Cluster dataset with Auto Cluster

Generate 12 clusters using kmeans

clusterop = ds.auto_cluster("kmeans-12", vector_fields=["example_vector_"])
clusterop.list_closest_to_center()

Quick tip! After each of these steps, the output will provide a URL to the Relevance AI dashboard where you can see a visualisation of your results

🚧 Development

Getting Started

To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.

python -m pip install pytest mypy

Then run testing using:

Don't forget to set your test credentials!

export TEST_PROJECT = xxx
export TEST_API_KEY = xxx

python -m pytest
mypy relevanceai

Set up precommit

pip install precommit
pre-commit install

🧰 Config

The config object contains the adjustable global settings for the SDK. For a description of all the settings, see here.

To view setting options, run the following:

client.config.options

The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:

client.config.set_option('logging.enable_logging', False)

To restore all options to their default, run the following:

Changing the base URL

You can change the base URL as such:

client.base_url = "https://.../latest"

You can also update the ingest base URL:

client.ingest_base_url = "https://.../latest

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RelevanceAI-1.2.1.tar.gz (146.2 kB view details)

Uploaded Source

Built Distribution

RelevanceAI-1.2.1-py3-none-any.whl (203.0 kB view details)

Uploaded Python 3

File details

Details for the file RelevanceAI-1.2.1.tar.gz.

File metadata

  • Download URL: RelevanceAI-1.2.1.tar.gz
  • Upload date:
  • Size: 146.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for RelevanceAI-1.2.1.tar.gz
Algorithm Hash digest
SHA256 feaea3e237ba34ea96d4bf371aa37110c997c2529fef8b952503a9c21357e307
MD5 51e4c0514fafded13c9bc49950fec29b
BLAKE2b-256 bf58f489ae385ec3364eb39702314e6a1a6a963c1aec2cff7c6acd4a9e0d100e

See more details on using hashes here.

File details

Details for the file RelevanceAI-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: RelevanceAI-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 203.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for RelevanceAI-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4114f124e78bd8f452ba9e3297109eb8ccc4b23e02aa7a37329de689bd73e96b
MD5 6f91cff849d2e4452106b500fea4646d
BLAKE2b-256 b89339afb6d81d6d43ca389bd1cfa58af66cb1d90794a5ae69552f1ba03680d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page