Skip to main content

No project description provided

Project description

Github Banner

Documentation Status License

Join our slack channel!

Run Our Colab Notebook And Get Started In Less Than 10 Lines Of Code!

Open In Colab

For guides and tutorials on how to use this package, visit https://relevanceai.readthedocs.io/en/development/ .

This SDK is used in conjunction with RelevanceAI's dashboard. Sign up and getting started here!

🔥 Features

  • Fast vector search with free dashboard to preview and visualise results
  • Vector clustering with support for libraries like scikit-learn and easy built-in customisation
  • Store nested documents with support for multiple vectors and metadata in one object
  • Multi-vector search with filtering, facets, weighting
  • Hybrid search with support for weighting keyword matching and vector search ... and more!

🧠 Documentation

API type Link
Guides Documentation
Python Reference Documentation

You can easily access our documentation while using the SDK using:

from relevanceai import Client
client = Client()

# Easy one line of code to access our docs
client.docs

🛠️ Installation

Using pip:

pip install -U relevanceai

Using conda:

conda install -c relevance relevanceai

⏩ Quickstart

Login into your project space

from relevanceai import Client

client = Client(<project_name>, <api_key>)

Prepare your documents for insertion by following the below format:

  • Each document should be a dictionary
  • Include a field _id as a primary key, otherwise it's automatically generated
  • Suffix vector fields with _vector_
docs = [
    {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
    {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
    {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
    {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
    {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]

Insert data into a dataset

Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you.

Quick tip! Our Dataset object is compatible with common dataframes methods like .head(), .shape() and .info().

ds = client.Dataset("quickstart")
ds.insert_documents(docs)

Perform vector search

results = ds.vector_search(
    multivector_query=[{"vector": [0.2, 0.2, 0.2], "fields": ["example_vector_"]}],
    page_size=3,
    query="sample search" # optional, name to display in dashboard
)

Cluster dataset with Auto Cluster

Generate 12 clusters using kmeans

clusterop = ds.cluster("kmeans-12", vector_fields=["example_vector_"])
clusterop.list_closest()

Quick tip! After each of these steps, the output will provide a URL to the Relevance AI dashboard where you can see a visualisation of your results

🚧 Development

Getting Started

To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.

python -m pip install pytest mypy

Then run testing using:

Don't forget to set your test credentials!

export TEST_PROJECT = xxx
export TEST_API_KEY = xxx

python -m pytest
mypy relevanceai

Set up precommit

pip install precommit
pre-commit install

🧰 Config

The config object contains the adjustable global settings for the SDK. For a description of all the settings, see here.

To view setting options, run the following:

client.config.options

The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:

client.config.set_option('logging.enable_logging', False)

To restore all options to their default, run the following:

Changing the base URL

You can change the base URL as such:

client.base_url = "https://.../latest"

You can also update the ingest base URL:

client.ingest_base_url = "https://.../latest

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RelevanceAI-2.3.0.tar.gz (261.0 kB view details)

Uploaded Source

Built Distribution

RelevanceAI-2.3.0-py3-none-any.whl (368.1 kB view details)

Uploaded Python 3

File details

Details for the file RelevanceAI-2.3.0.tar.gz.

File metadata

  • Download URL: RelevanceAI-2.3.0.tar.gz
  • Upload date:
  • Size: 261.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for RelevanceAI-2.3.0.tar.gz
Algorithm Hash digest
SHA256 b85776c7b5facfc8dd73bde2ebf26a42449915e5bf3a02fbbb10297f84f457dc
MD5 c7fb51120fc3ad31e0751f686bb29a9d
BLAKE2b-256 4467c0b24183940ceabaf3b149e2cbcdf81f65a43972c0474e848a6adc6ff4e8

See more details on using hashes here.

File details

Details for the file RelevanceAI-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: RelevanceAI-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 368.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for RelevanceAI-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 77edc2e33770a0728e0195af2169076cc09085d9c14bdc6a869725606fa4b449
MD5 88ee85e601509ba6b7f2379f2d1c8445
BLAKE2b-256 733852a8aee75834b25441a50b600f9c33df8078137c3218b5afb93a9fb8dee4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page