Skip to main content

No project description provided

Project description

Github Banner

Documentation Status License

Join our slack channel!

Run Our Colab Notebook And Get Started In Less Than 10 Lines Of Code!

Open In Colab

For guides and tutorials on how to use this package, visit https://relevanceai.readthedocs.io/en/development/ .

This SDK is used in conjunction with RelevanceAI's dashboard. Sign up and getting started here!

🔥 Features

  • Fast vector search with free dashboard to preview and visualise results
  • Vector clustering with support for libraries like scikit-learn and easy built-in customisation
  • Store nested documents with support for multiple vectors and metadata in one object
  • Multi-vector search with filtering, facets, weighting
  • Hybrid search with support for weighting keyword matching and vector search ... and more!

🧠 Documentation

API type Link
Guides Documentation
Python Reference Documentation

You can easily access our documentation while using the SDK using:

from relevanceai import Client
client = Client()

# Easy one line of code to access our docs
client.docs

🛠️ Installation

Using pip:

pip install -U relevanceai

Using conda:

conda install -c relevance relevanceai

⏩ Quickstart

Login into your project space

from relevanceai import Client

client = Client(<project_name>, <api_key>)

Prepare your documents for insertion by following the below format:

  • Each document should be a dictionary
  • Include a field _id as a primary key, otherwise it's automatically generated
  • Suffix vector fields with _vector_
docs = [
    {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
    {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
    {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
    {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
    {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]

Insert data into a dataset

Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you.

Quick tip! Our Dataset object is compatible with common dataframes methods like .head(), .shape() and .info().

ds = client.Dataset("quickstart")
ds.insert_documents(docs)

Perform vector search

results = ds.vector_search(
    multivector_query=[{"vector": [0.2, 0.2, 0.2], "fields": ["example_vector_"]}],
    page_size=3,
    query="sample search" # optional, name to display in dashboard
)

Cluster dataset with Auto Cluster

Generate 12 clusters using kmeans

clusterop = ds.cluster("kmeans-12", vector_fields=["example_vector_"])
clusterop.list_closest()

Quick tip! After each of these steps, the output will provide a URL to the Relevance AI dashboard where you can see a visualisation of your results

🚧 Development

Getting Started

To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.

python -m pip install pytest mypy

Then run testing using:

Don't forget to set your test credentials!

export TEST_PROJECT = xxx
export TEST_API_KEY = xxx

python -m pytest
mypy relevanceai

Set up precommit

pip install precommit
pre-commit install

🧰 Config

The config object contains the adjustable global settings for the SDK. For a description of all the settings, see here.

To view setting options, run the following:

client.config.options

The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:

client.config.set_option('logging.enable_logging', False)

To restore all options to their default, run the following:

Changing the base URL

You can change the base URL as such:

client.base_url = "https://.../latest"

You can also update the ingest base URL:

client.ingest_base_url = "https://.../latest

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RelevanceAI-2.6.1.tar.gz (283.1 kB view details)

Uploaded Source

Built Distribution

RelevanceAI-2.6.1-py3-none-any.whl (406.4 kB view details)

Uploaded Python 3

File details

Details for the file RelevanceAI-2.6.1.tar.gz.

File metadata

  • Download URL: RelevanceAI-2.6.1.tar.gz
  • Upload date:
  • Size: 283.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for RelevanceAI-2.6.1.tar.gz
Algorithm Hash digest
SHA256 87c7b0de3adabce9d3569122418cb5710c363b05cc5eb7140aac7aa0e1d59d7b
MD5 ffff1ff87e5b563309e8ea21f49927d9
BLAKE2b-256 49955e3743018224c16e784468100ce9f1343d4132eaf6b9db3d8c34e50100a7

See more details on using hashes here.

File details

Details for the file RelevanceAI-2.6.1-py3-none-any.whl.

File metadata

  • Download URL: RelevanceAI-2.6.1-py3-none-any.whl
  • Upload date:
  • Size: 406.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for RelevanceAI-2.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6e90d2fa9fbabffeb11452acf40fc01ae0ff6210394dfbb60a048b4d3c24c19d
MD5 2403e7639c62dd337c4a17da82e70e48
BLAKE2b-256 f00a1ee62d80d035b232c7b7419222f876d38f297b271794c745e58d5e3f03ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page