Skip to main content

No project description provided

Project description

Github Banner

Join our slack channel!

Relevance AI - The ML Platform for Unstructured Data Analysis

Documentation Status License

🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more.

🔥 Use Relevance to unlock the value of your unstructured data:

  • ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code.
  • ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images.
  • 📊 Create charts for both structured and unstructured.
  • 🔎 Drilldown with filters and similarity search to explore and find insights.
  • 🚀 Share data apps with your team.

Sign up for a free account ->

Relevance AI also acts as a platform for:

  • 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters.
  • 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases.

🧠 Documentation

Type Link
Python API Documentation
Python Reference Documentation
Cloud Dashboard Documentation

🛠️ Installation

Using pip:

pip install -U relevanceai

Using conda:

conda install -c relevance relevanceai

⏩ Quickstart

Open In Colab

Login to relevanceai:

from relevanceai import Client

client = Client()

Prepare your documents for insertion by following the below format:

  • Each document should be a dictionary
  • Include a field _id as a primary key, otherwise it's automatically generated
  • Suffix vector fields with _vector_
docs = [
    {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
    {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
    {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
    {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
    {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]

Insert data into a dataset

Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you.

ds = client.Dataset("quickstart")
ds.insert_documents(docs)

Quick tip! Our Dataset object is compatible with common dataframes methods like .head(), .shape() and .info().

Perform vector search

query = [
    {"vector": [0.2, 0.2, 0.2], "field": "example_vector_"}
]
results = ds.search(
    vector_search_query=query,
    page_size=3,
)

Learn more about how to flexibly configure your vector search ->

Perform clustering

Generate clusters

clusterop = ds.cluster(vector_fields=["example_vector_"])
clusterop.list_closest()

Generate clusters with sklearn

from sklearn.cluster import AgglomerativeClustering

cluster_model = AgglomerativeClustering()
clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative")
clusterop.list_closest()

Learn more about how to flexibly configure your clustering ->

🧰 Config

The config object contains the adjustable global settings for the SDK. For a description of all the settings, see here.

To view setting options, run the following:

client.config.options

The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:

client.config.set_option('logging.enable_logging', False)

To restore all options to their default, run the following:

Changing the base URL

You can change the base URL as such:

client.base_url = "https://.../latest"

🚧 Development

Getting Started

To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.

python -m pip install pytest mypy

Then run testing using:

Don't forget to set your test credentials!

export TEST_PROJECT = xxx
export TEST_API_KEY = xxx

python -m pytest
mypy relevanceai

Set up precommit

pip install precommit
pre-commit install

Release history Release notifications | RSS feed

This version

2.7.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RelevanceAI-2.7.1.tar.gz (295.7 kB view details)

Uploaded Source

Built Distribution

RelevanceAI-2.7.1-py3-none-any.whl (423.1 kB view details)

Uploaded Python 3

File details

Details for the file RelevanceAI-2.7.1.tar.gz.

File metadata

  • Download URL: RelevanceAI-2.7.1.tar.gz
  • Upload date:
  • Size: 295.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for RelevanceAI-2.7.1.tar.gz
Algorithm Hash digest
SHA256 1a75c82dba68de989a2a031c132e0f09191254c3f798bcf3bbd419f844c934d2
MD5 0bb140d8c6957cb4cac2a8878ed34492
BLAKE2b-256 0235a70411ba2ad90c3a71a32b00facede3db4c060548801b41035c835c84a62

See more details on using hashes here.

File details

Details for the file RelevanceAI-2.7.1-py3-none-any.whl.

File metadata

  • Download URL: RelevanceAI-2.7.1-py3-none-any.whl
  • Upload date:
  • Size: 423.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for RelevanceAI-2.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c3110493ca1740c405e202799bba64b185787b931aeadcc0fda53304626b5551
MD5 2a99c40f9ff0ded8cdabf321be51662e
BLAKE2b-256 41c711d0ee056b84bc5b531b66e9da9583b9338dfe97ae79c3ebac24cf92c8b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page