Skip to main content

No project description provided

Project description

Github Banner

Relevance AI - The ML Platform for Unstructured Data Analysis

Documentation Status License

🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more.

🔥 Use Relevance to unlock the value of your unstructured data:

  • ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code.
  • ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images.
  • 📊 Create charts for both structured and unstructured.
  • 🔎 Drilldown with filters and similarity search to explore and find insights.
  • 🚀 Share data apps with your team.

Sign up for a free account ->

Relevance AI also acts as a platform for:

  • 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters.
  • 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases.

🧠 Documentation

Type Link
Python API Documentation
Python Reference Documentation
Cloud Dashboard Documentation

🛠️ Installation

Using pip:

pip install -U relevanceai

Using conda:

conda install -c relevance relevanceai

⏩ Quickstart

Open In Colab

Login to relevanceai:

from relevanceai import Client

client = Client()

Prepare your documents for insertion by following the below format:

  • Each document should be a dictionary
  • Include a field _id as a primary key, otherwise it's automatically generated
  • Suffix vector fields with _vector_
docs = [
    {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"},
    {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"},
    {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"},
    {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"},
    {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"},
]

Insert data into a dataset

Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you.

ds = client.Dataset("quickstart")
ds.insert_documents(docs)

Quick tip! Our Dataset object is compatible with common dataframes methods like .head(), .shape() and .info().

Perform vector search

query = [
    {"vector": [0.2, 0.2, 0.2], "field": "example_vector_"}
]
results = ds.search(
    vector_search_query=query,
    page_size=3,
)

Learn more about how to flexibly configure your vector search ->

Perform clustering

Generate clusters

clusterop = ds.cluster(vector_fields=["example_vector_"])
clusterop.list_closest()

Generate clusters with sklearn

from sklearn.cluster import AgglomerativeClustering

cluster_model = AgglomerativeClustering()
clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative")
clusterop.list_closest()

Learn more about how to flexibly configure your clustering ->

🧰 Config

The config object contains the adjustable global settings for the SDK. For a description of all the settings, see here.

To view setting options, run the following:

client.config.options

The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging:

client.config.set_option('logging.enable_logging', False)

To restore all options to their default, run the following:

Changing the base URL

You can change the base URL as such:

client.base_url = "https://.../latest"

🚧 Development

Getting Started

To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing.

python -m pip install pytest mypy

Then run testing using:

Don't forget to set your test credentials!

export TEST_PROJECT = xxx
export TEST_API_KEY = xxx

python -m pytest
mypy relevanceai

Set up precommit

pip install precommit
pre-commit install

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RelevanceAI-3.2.12.tar.gz (300.2 kB view details)

Uploaded Source

Built Distribution

RelevanceAI-3.2.12-py3-none-any.whl (426.7 kB view details)

Uploaded Python 3

File details

Details for the file RelevanceAI-3.2.12.tar.gz.

File metadata

  • Download URL: RelevanceAI-3.2.12.tar.gz
  • Upload date:
  • Size: 300.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for RelevanceAI-3.2.12.tar.gz
Algorithm Hash digest
SHA256 db98f245365172fcf7ebce9c73670736d7c578502cb134b6f0c43ed5bf72d28a
MD5 68c71282f27a5e87991bde1f6b2b77b8
BLAKE2b-256 f24685e209d0ca459c42b97aa0f8b16324007738252f39acb4cac0aa1c4f0da0

See more details on using hashes here.

File details

Details for the file RelevanceAI-3.2.12-py3-none-any.whl.

File metadata

  • Download URL: RelevanceAI-3.2.12-py3-none-any.whl
  • Upload date:
  • Size: 426.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for RelevanceAI-3.2.12-py3-none-any.whl
Algorithm Hash digest
SHA256 a551263fc4745e6bcd6b924db31177d0fd644e817ad5c6dfe3007d382260375a
MD5 2c406a39f7c2c7229cd651d4bbdff465
BLAKE2b-256 5a4fdd0365e730c5013ca19268b5fbdecba4ef8617bbf3d0f406a37118a54239

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page