Skip to main content

Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget

Project description

Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget

Conference Paper arXiv

Hugging Face Collection Hugging Face Spaces

Lightning PyTorch Code style: black Upload to PyPi PyPi Version

A blazing fast and lightweight Information Extraction model for Entity Linking and Relation Extraction.

Installation

Installation from PyPI

pip install relik
Other installation options

Install with optional dependencies

Install with all the optional dependencies.

pip install relik[all]

Install with optional dependencies for training and evaluation.

pip install relik[train]

Install with optional dependencies for FAISS

FAISS pypi package is only available for CPU. If you want to use GPU, you need to install it from source or use the conda package.

For CPU:

pip install relik[faiss]

For GPU:

conda create -n relik python=3.10
conda activate relik

# install pytorch
conda install -y pytorch=2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia

# GPU
conda install -y -c pytorch -c nvidia faiss-gpu=1.8.0
# or GPU with NVIDIA RAFT
conda install -y -c pytorch -c nvidia -c rapidsai -c conda-forge faiss-gpu-raft=1.8.0

pip install relik

Install with optional dependencies for serving the models with FastAPI and Ray.

pip install relik[serve]

Installation from source

git clone https://github.com/SapienzaNLP/relik.git
cd relik
pip install -e .[all]

Quick Start

ReLiK is a lightweight and fast model for Entity Linking and Relation Extraction. It is composed of two main components: a retriever and a reader. The retriever is responsible for retrieving relevant documents from a large collection of documents, while the reader is responsible for extracting entities and relations from the retrieved documents. ReLiK can be used with the from_pretrained method to load a pre-trained pipeline.

Here is an example of how to use ReLiK for Entity Linking:

from relik import Relik

relik = Relik.from_pretrained("sapienzanlp/relik-entity-linking-large")
relik("Michael Jordan was one of the best players in the NBA.")

and for Relation Extraction:

from relik import Relik

relik = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-large")
relik("Michael Jordan was one of the best players in the NBA.")

The full list of available models can be found on ๐Ÿค— Hugging Face.

Retrievers and Readers can be used separately:

from relik import Relik

# If you want to use the retriever only
retriever = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-large", reader=None)

# If you want to use the reader only
reader = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-large", retriever=None)

CLI

ReLiK provides a CLI to perform inference on a text file or a directory of text files. The CLI can be used as follows:

relik inference --help

  Usage: relik inference [OPTIONS] MODEL_NAME_OR_PATH INPUT_PATH OUTPUT_PATH

โ•ญโ”€ Arguments โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ *    model_name_or_path      TEXT  [default: None] [required]                                           โ”‚
โ”‚ *    input_path              TEXT  [default: None] [required]                                           โ”‚
โ”‚ *    output_path             TEXT  [default: None] [required]                                           โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
โ•ญโ”€ Options โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ --batch-size                               INTEGER  [default: 8]                                        โ”‚
โ”‚ --num-workers                              INTEGER  [default: 4]                                        โ”‚
โ”‚ --device                                   TEXT     [default: cuda]                                     โ”‚
โ”‚ --precision                                TEXT     [default: fp16]                                     โ”‚
โ”‚ --top-k                                    INTEGER  [default: 100]                                      โ”‚
โ”‚ --window-size                              INTEGER  [default: None]                                     โ”‚
โ”‚ --window-stride                            INTEGER  [default: None]                                     โ”‚
โ”‚ --annotation-type                          TEXT     [default: char]                                     โ”‚
โ”‚ --progress-bar        --no-progress-bar             [default: progress-bar]                             โ”‚
โ”‚ --model-kwargs                             TEXT     [default: None]                                     โ”‚
โ”‚ --inference-kwargs                         TEXT     [default: None]                                     โ”‚
โ”‚ --help                                              Show this message and exit.                         โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

For example:

relik inference sapienzanlp/relik-entity-linking-large data.txt output.jsonl

Before You Start

In the following sections, we provide a step-by-step guide on how to prepare the data, train the retriever and reader, and evaluate the model.

Entity Linking

All your data should have the following starting structure:

{
  "doc_id": int,  # Unique identifier for the document
  "doc_text": txt,  # Text of the document
  "doc_annotations": # Char level annotations
    [
      [start, end, label],
      [start, end, label],
      ...
    ]
}

We used BLINK (Wu et al., 2019) and AIDA (Hoffart et al, 2011) datasets for training and evaluation. More specifically, we used the BLINK dataset for pre-training the retriever and the AIDA dataset for fine-tuning the retriever and training the reader.

The BLINK dataset can be downloaded from the GENRE repo from here. We used blink-train-kilt.jsonl and blink-dev-kilt.jsonl as training and validation datasets. Assuming we have downloaded the two files in the data/blink folder, we converted the BLINK dataset to the ReLiK format using the following script:

# Train
python scripts/data/blink/preprocess_genre_blink.py \
  data/blink/blink-train-kilt.jsonl \
  data/blink/processed/blink-train-kilt-relik.jsonl

# Dev
python scripts/data/blink/preprocess_genre_blink.py \
  data/blink/blink-dev-kilt.jsonl \
  data/blink/processed/blink-dev-kilt-relik.jsonl

The AIDA dataset is not publicly available, but we provide the file we used without text field. You can find the file in ReLiK format in data/aida/processed folder.

The Wikipedia index we used can be downloaded from here.

Relation Extraction

TODO

Retriever

We perform a two-step training process for the retriever. First, we "pre-train" the retriever using BLINK (Wu et al., 2019) dataset and then we "fine-tune" it using AIDA (Hoffart et al, 2011).

Data Preparation

The retriever requires a dataset in a format similar to DPR: a jsonl file where each line is a dictionary with the following keys:

{
  "question": "....",
  "positive_ctxs": [{
    "title": "...",
    "text": "...."
  }],
  "negative_ctxs": [{
    "title": "...",
    "text": "...."
  }],
  "hard_negative_ctxs": [{
    "title": "...",
    "text": "...."
  }]
}

The retriever also needs an index to search for the documents. The documents to index can be either a jsonl file or a tsv file similar to DPR:

  • jsonl: each line is a json object with the following keys: id, text, metadata
  • tsv: each line is a tab-separated string with the id and text column, followed by any other column that will be stored in the metadata field

jsonl example:

{
  "id": "...",
  "text": "...",
  "metadata": ["{...}"]
},
...

tsv example:

id \t text \t any other column
...

Entity Linking

BLINK

Once you have the BLINK dataset in the ReLiK format, you can create the windows with the following script:

# train
python scripts/data/create_windows.py \
  data/blink/processed/blink-train-kilt-relik.jsonl \
  data/blink/processed/blink-train-kilt-relik-windowed.jsonl

# dev
python scripts/data/create_windows.py \
  data/blink/processed/blink-dev-kilt-relik.jsonl \
  data/blink/processed/blink-dev-kilt-relik-windowed.jsonl

and then convert it to the DPR format:

# train
python scripts/data/blink/convert_to_dpr.py \
  data/blink/processed/blink-train-kilt-relik-windowed.jsonl \
  data/blink/processed/blink-train-kilt-relik-windowed-dpr.jsonl

# dev
python scripts/data/blink/convert_to_dpr.py \
  data/blink/processed/blink-dev-kilt-relik-windowed.jsonl \
  data/blink/processed/blink-dev-kilt-relik-windowed-dpr.jsonl
AIDA

Since the AIDA dataset is not publicly available, we can provide the annotations for the AIDA dataset in the ReLiK format as an example. Assuming you have the full AIDA dataset in the data/aida, you can convert it to the ReLiK format and then create the windows with the following script:

python scripts/data/create_windows.py \
  data/data/processed/aida-train-relik.jsonl \
  data/data/processed/aida-train-relik-windowed.jsonl

and then convert it to the DPR format:

python scripts/data/convert_to_dpr.py \
  data/data/processed/aida-train-relik-windowed.jsonl \
  data/data/processed/aida-train-relik-windowed-dpr.jsonl

Training the model

The relik retriever train command can be used to train the retriever. It requires the following arguments:

  • config_path: The path to the configuration file.
  • overrides: A list of overrides to the configuration file, in the format key=value.

Examples of configuration files can be found in the relik/retriever/conf folder.

Entity Linking

The configuration files in relik/retriever/conf are pretrain_iterable_in_batch.yaml and finetune_iterable_in_batch.yaml, which we used to pre-train and fine-tune the retriever, respectively.

For instance, to train the retriever on the AIDA dataset, you can run the following command:

relik retriever train relik/retriever/conf/finetune_iterable_in_batch.yaml \
  model.language_model=intfloat/e5-base-v2 \
  train_dataset_path=data/aida/processed/aida-train-relik-windowed-dpr.jsonl \
  val_dataset_path=data/aida/processed/aida-dev-relik-windowed-dpr.jsonl \
  test_dataset_path=data/aida/processed/aida-test-relik-windowed-dpr.jsonl

Relation Extraction

TODO

Inference

By passing train.only_test=True to the relik retriever train command, you can skip the training and only evaluate the model. It needs also the path to the PyTorch Lightning checkpoint and the dataset to evaluate on.

relik retriever train relik/retriever/conf/finetune_iterable_in_batch.yaml \
  train.only_test=True \
  test_dataset_path=data/aida/processed/aida-test-relik-windowed-dpr.jsonl
  model.checkpoint_path=path/to/checkpoint

The retriever encoder can be saved from the checkpoint with the following command:

from relik.retriever.lightning_modules.pl_modules import GoldenRetrieverPLModule

checkpoint_path = "path/to/checkpoint"
retriever_folder = "path/to/retriever"

# If you want to push the model to the Hugging Face Hub set push_to_hub=True
push_to_hub = False
# If you want to push the model to the Hugging Face Hub set the repo_id
repo_id = "sapienzanlp/relik-retriever-e5-base-v2-aida-blink-encoder"

pl_module = GoldenRetrieverPLModule.load_from_checkpoint(checkpoint_path)
pl_module.model.save_pretrained(retriever_folder, push_to_hub=push_to_hub, repo_id=repo_id)

with push_to_hub=True the model will be pushed to the ๐Ÿค— Hugging Face Hub with repo_id the repository id where the model will be pushed.

The retriever needs a index to search for the documents. The index can be created using relik retriever build-index command

relik retriever build-index --help 

 Usage: relik retriever build-index [OPTIONS] QUESTION_ENCODER_NAME_OR_PATH                                                                   
                                    DOCUMENT_PATH OUTPUT_FOLDER                                                                                                                                              
โ•ญโ”€ Arguments โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ *    question_encoder_name_or_path      TEXT  [default: None] [required]                                                                   โ”‚
โ”‚ *    document_path                      TEXT  [default: None] [required]                                                                   โ”‚
โ”‚ *    output_folder                      TEXT  [default: None] [required]                                                                   โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
โ•ญโ”€ Options โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ --document-file-type                                  TEXT     [default: jsonl]                                                            โ”‚
โ”‚ --passage-encoder-name-or-path                        TEXT     [default: None]                                                             โ”‚
โ”‚ --indexer-class                                       TEXT     [default: relik.retriever.indexers.inmemory.InMemoryDocumentIndex]          โ”‚
โ”‚ --batch-size                                          INTEGER  [default: 512]                                                              โ”‚
โ”‚ --num-workers                                         INTEGER  [default: 4]                                                                โ”‚
โ”‚ --passage-max-length                                  INTEGER  [default: 64]                                                               โ”‚
โ”‚ --device                                              TEXT     [default: cuda]                                                             โ”‚
โ”‚ --index-device                                        TEXT     [default: cpu]                                                              โ”‚
โ”‚ --precision                                           TEXT     [default: fp32]                                                             โ”‚
โ”‚ --push-to-hub                     --no-push-to-hub             [default: no-push-to-hub]                                                   โ”‚
โ”‚ --repo-id                                             TEXT     [default: None]                                                             โ”‚
โ”‚ --help                                                         Show this message and exit.                                                 โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

With the encoder and the index, the retriever can be loaded from a repo id or a local path:

from relik.retriever import GoldenRetriever

encoder_name_or_path = "sapienzanlp/relik-retriever-e5-base-v2-aida-blink-encoder"
index_name_or_path = "sapienzanlp/relik-retriever-e5-base-v2-aida-blink-wikipedia-index"

retriever = GoldenRetriever(
  question_encoder=encoder_name_or_path,
  document_index=index_name_or_path,
  device="cuda", # or "cpu"
  precision="16", # or "32", "bf16"
  index_device="cuda", # or "cpu"
  index_precision="16", # or "32", "bf16"
)

and then it can be used to retrieve documents:

retriever.retrieve("Michael Jordan was one of the best players in the NBA.", top_k=100)

Reader

The reader is responsible for extracting entities and relations from documents from a set of candidates (e.g., possible entities or relations). The reader can be trained for span extraction or triplet extraction. The RelikReaderForSpanExtraction is used for span extraction, i.e. Entity Linking , while the RelikReaderForTripletExtraction is used for triplet extraction, i.e. Relation Extraction.

Data Preparation

The reader requires the windowized dataset we created in section Before You Start augmented with the candidate from the retriever. The candidate can be added to the dataset using the relik retriever add-candidates command.

relik retriever add-candidates --help

 Usage: relik retriever add-candidates [OPTIONS] QUESTION_ENCODER_NAME_OR_PATH                                 
                                       DOCUMENT_NAME_OR_PATH INPUT_PATH                                        
                                       OUTPUT_PATH

โ•ญโ”€ Arguments โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ *    question_encoder_name_or_path      TEXT  [default: None] [required]                                    โ”‚
โ”‚ *    document_name_or_path              TEXT  [default: None] [required]                                    โ”‚
โ”‚ *    input_path                         TEXT  [default: None] [required]                                    โ”‚
โ”‚ *    output_path                        TEXT  [default: None] [required]                                    โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
โ•ญโ”€ Options โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ --passage-encoder-name-or-path                           TEXT     [default: None]                           โ”‚
โ”‚ --top-k                                                  INTEGER  [default: 100]                            โ”‚
โ”‚ --batch-size                                             INTEGER  [default: 128]                            โ”‚
โ”‚ --num-workers                                            INTEGER  [default: 4]                              โ”‚
โ”‚ --device                                                 TEXT     [default: cuda]                           โ”‚
โ”‚ --index-device                                           TEXT     [default: cpu]                            โ”‚
โ”‚ --precision                                              TEXT     [default: fp32]                           โ”‚
โ”‚ --use-doc-topics                  --no-use-doc-topics             [default: no-use-doc-topics]              โ”‚
โ”‚ --help                                                            Show this message and exit.               โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

Training the model

Similar to the retriever, the relik reader train command can be used to train the retriever. It requires the following arguments:

  • config_path: The path to the configuration file.
  • overrides: A list of overrides to the configuration file, in the format key=value.

Examples of configuration files can be found in the relik/reader/conf folder.

Entity Linking

The configuration files in relik/reader/conf are large.yaml and base.yaml, which we used to train the large and base reader, respectively. For instance, to train the large reader on the AIDA dataset run:

relik reader train relik/reader/conf/large.yaml \
  train_dataset_path=data/aida/processed/aida-train-relik-windowed-candidates.jsonl \
  val_dataset_path=data/aida/processed/aida-dev-relik-windowed-candidates.jsonl \
  test_dataset_path=data/aida/processed/aida-dev-relik-windowed-candidates.jsonl

Relation Extraction

TODO

Inference

The reader can be saved from the checkpoint with the following command:

from relik.reader.lightning_modules.relik_reader_pl_module import RelikReaderPLModule

checkpoint_path = "path/to/checkpoint"
reader_folder = "path/to/reader"

# If you want to push the model to the Hugging Face Hub set push_to_hub=True
push_to_hub = False
# If you want to push the model to the Hugging Face Hub set the repo_id
repo_id = "sapienzanlp/relik-reader-deberta-v3-large-aida"

pl_model = RelikReaderPLModule.load_from_checkpoint(
    trainer.checkpoint_callback.best_model_path
)
pl_model.relik_reader_core_model.save_pretrained(experiment_path, push_to_hub=push_to_hub, repo_id=repo_id)

with push_to_hub=True the model will be pushed to the ๐Ÿค— Hugging Face Hub with repo_id the repository id where the model will be pushed.

The reader can be loaded from a repo id or a local path:

from relik.reader import RelikReaderForSpanExtraction, RelikReaderForTripletExtraction

# the reader for span extraction
reader_span = RelikReaderForSpanExtraction(
  "sapienzanlp/relik-reader-deberta-v3-large-aida"
)
# the reader for triplet extraction
reader_tripltes = RelikReaderForTripletExtraction(
  "sapienzanlp/relik-reader-deberta-v3-large-nyt"
)

and used to extract entities and relations:

# an example of candidates for the reader
candidates = ["Michael Jordan", "NBA", "Chicago Bulls", "Basketball", "United States"]
reader_span.read("Michael Jordan was one of the best players in the NBA.", candidates=candidates)

Performance

Entity Linking

We evaluate the performance of ReLiK on Entity Linking using GERBIL. The following table shows the results (InKB Micro F1) of ReLiK Large and Base:

Model AIDA-B MSNBC Der K50 R128 R500 OKE15 OKE16 AVG AVG-OOD Speed (ms)
Base 85.25 72.27 55.59 68.02 48.13 41.61 62.53 52.25 60.71 57.2 n
Large 86.37 75.04 56.25 72.8 51.67 42.95 65.12 57.21 63.43 60.15 n

To evaluate ReLiK we use the following steps:

  1. Download the GERBIL server from here.

  2. Start the GERBIL server:

cd gerbil && ./start.sh
  1. Start the following services:
cd gerbil-SpotWrapNifWS4Test && mvn clean -Dmaven.tomcat.port=1235 tomcat:run
  1. Start the ReLiK server for GERBIL providing the model name as an argument (e.g. sapienzanlp/relik-entity-linking-large):
python relik/reader/utils/gerbil_server.py --relik-model-name sapienzanlp/relik-entity-linking-large
  1. Open the url http://localhost:1234/gerbil and:
    • Select A2KB as experiment type
    • Select "Ma - strong annotation match"
    • In Name filed write the name you want to give to the experiment
    • In URI field write: http://localhost:1235/gerbil-spotWrapNifWS4Test/myalgorithm
    • Select the datasets (We use AIDA-B, MSNBC, Der, K50, R128, R500, OKE15, OKE16)
    • Finally, run experiment

Relation Extraction

  • TODO

Cite this work

If you use any part of this work, please consider citing the paper as follows:

@inproceedings{orlando-etal-2024-relik,
    title     = "Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget",
    author    = "Orlando, Riccardo and Huguet Cabot, Pere-Llu{\'\i}s and Barba, Edoardo and Navigli, Roberto",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
    month     = aug,
    year      = "2024",
    address   = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
}

License

TODO

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

relik-1.0.0.dev0.tar.gz (145.6 kB view details)

Uploaded Source

Built Distribution

relik-1.0.0.dev0-py3-none-any.whl (181.0 kB view details)

Uploaded Python 3

File details

Details for the file relik-1.0.0.dev0.tar.gz.

File metadata

  • Download URL: relik-1.0.0.dev0.tar.gz
  • Upload date:
  • Size: 145.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for relik-1.0.0.dev0.tar.gz
Algorithm Hash digest
SHA256 40f8ad1f9458d21f18862e2bb416b08569d7ac783071f4d843e9856ae87c4c14
MD5 446080e4c52e155bd0805ff46cd0dc50
BLAKE2b-256 d67af5919764421268ad41a8db5d4d0e463c15aa71d00eca865a7a99fe9df66e

See more details on using hashes here.

Provenance

File details

Details for the file relik-1.0.0.dev0-py3-none-any.whl.

File metadata

  • Download URL: relik-1.0.0.dev0-py3-none-any.whl
  • Upload date:
  • Size: 181.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for relik-1.0.0.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 41ee7947457935d60a4a3994b55ecfb6fc779c94a5679b8a512376df36a3a286
MD5 e4e7c44553467db6eac6f74dc9f0310a
BLAKE2b-256 fae4fa8dec23611fa38b9a48cd259cd278a5a2ad46ca497330e80f9fbbc9a323

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page