Skip to main content

remodels

Project description

remodels

PyPI Status Python Version License

Documentation Status Tests Codecov

pre-commit Black

ReModels is a Python package for probabilistic energy price forecasting using Quantile Regression Averaging (QRA) methods.

Installation

You can install remodels via pip from PyPI:

$ pip install remodels

Alternatively, you can install from source:

$ git clone https://github.com/zakrzewow/remodels.git
$ cd remodels
$ pip install .

Features

  • Dataset Download: access commonly used public datasets for transparent data acquisition.
  • Data Preprocessing: apply variance stabilizing transformation for improved data quality.
  • Forecast Generation: produce point and probabilistic forecasts with reference implementations of QRA variants.
  • Result Evaluation: compare predictions using dedicated metrics for fair and consistent evaluation.

ReModels provides a robust framework for researchers to compare different QRA methods and other forecasting techniques. It supports the development of new forecasting methods, extending beyond energy price forecasting.

ReModels simplifies and enhances energy price forecasting research with comprehensive tools and transparent methodologies.

The main functionality of the ReModels package are Variance Stabilizing Transformations and Quantile Regression Averaging variants.

Implemented VSTs:

  • clipping,
  • clipping with the logarithm function
  • logistic transform
  • inverse hyperbolic sine transform
  • BoxCox transform
  • polynomial transform
  • mirror-log transformation
  • probability integral transform

Implemented QRA variants:

  • QRA
  • QRM
  • FQRA
  • FQRM
  • sFQRA
  • sFQRM
  • LQRA
  • SQRA
  • SQRM

Usage

VST basic usage example:

import numpy as np
from remodels.transformers.VSTransformers import ArcsinhScaler, BoxCoxScaler, ClippingScaler, LogClippingScaler, LogisticScaler, MLogScaler, PITScaler, PolyScaler

X = np.random.normal(0, 1, size=(100, 10))
ArcsinhScaler().fit_transform(X)

QRA basic usage example:

import numpy as np
from remodels.qra import QRA, QRM, FQRA, FQRM, sFQRA, sFQRM, LQRA, SQRA, SQRM

X = np.random.normal(0, 1, size=(100, 10))
y = X.sum(axis=1)

qra = QRA(quantile=0.5, fit_intercept=True)
qra.fit(X, y).predict(X)

For more advanced examples of high-level functionalities, please see the Usage or Reference.

License

Distributed under the terms of the MIT license, remodels is free and open source software.

Credits

This project was generated from @cjolowicz's Hypermodern Python Cookiecutter template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

remodels-1.0.1.tar.gz (27.1 kB view details)

Uploaded Source

Built Distribution

remodels-1.0.1-py3-none-any.whl (41.3 kB view details)

Uploaded Python 3

File details

Details for the file remodels-1.0.1.tar.gz.

File metadata

  • Download URL: remodels-1.0.1.tar.gz
  • Upload date:
  • Size: 27.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for remodels-1.0.1.tar.gz
Algorithm Hash digest
SHA256 03f2f58fd560457f779dc2f7863d4762178462decc17b96e26a13256647b3843
MD5 6ac7bfc698c567a22d4d55e88dd5e0c2
BLAKE2b-256 d0542734148cb56b7119b61184d72d50f6f9756beed136df325bfc8d43b2f49f

See more details on using hashes here.

File details

Details for the file remodels-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: remodels-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 41.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for remodels-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 abdef144b3ef7008600bbdbe46e4409ca3875b51897533128b7c09491a84ccc2
MD5 df8f01bcea26e649d335485d003aed66
BLAKE2b-256 c6f05297e1dc1a968e1ea20a76d1cf5fba22df2f1369b81c645f6267544b0814

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page