Skip to main content

Remove image background

Project description

removebg_infusiblecoder

PyPI Downloads Downloads Downloads License

removebg_infusiblecoder is a tool to remove images background.

If this project has helped you, please consider making a donation.

Requirements

python: >3.7, <3.11

Installation

CPU support:

pip install removebg-infusiblecoder # for library
pip install removebg-infusiblecoder[cli] # for library + cli

GPU support:

pip install removebg-infusiblecoder[gpu] # for library
pip install removebg-infusiblecoder[gpu,cli] # for library + cli
``
## Usage as a cli

After the installation step you can use removebg_infusiblecoder just typing `removebg_infusiblecoder` in your terminal window.

The `removebg_infusiblecoder` command has 4 subcommands, one for each input type:
- `i` for files
- `p` for folders
- `s` for http server
- `b` for RGB24 pixel binary stream

You can get help about the main command using:

removebg_infusiblecoder --help


As well, about all the subcommands using:

removebg_infusiblecoder --help


### removebg_infusiblecoder `i`

Used when input and output are files.

Remove the background from a remote image

curl -s http://input.png | removebg_infusiblecoder i > output.png


Remove the background from a local file

removebg_infusiblecoder i path/to/input.png path/to/output.png


Remove the background specifying a model

removebg_infusiblecoder -m u2netp i path/to/input.png path/to/output.png


Remove the background returning only the mask

removebg_infusiblecoder -om i path/to/input.png path/to/output.png



Remove the background applying an alpha matting

removebg_infusiblecoder i -a path/to/input.png path/to/output.png


Passing extras parameters

SAM example

removebg_infusiblecoder i -m sam -x '{ "sam_prompt": [{"type": "point", "data": [724, 740], "label": 1}] }' examples/plants-1.jpg examples/plants-1.out.png


Custom model example

removebg_infusiblecoder i -m u2net_custom -x '{"model_path": "~/.u2net/u2net.onnx"}' path/to/input.png path/to/output.png



### removebg_infusiblecoder `p`

Used when input and output are folders.

Remove the background from all images in a folder

removebg_infusiblecoder p path/to/input path/to/output


Same as before, but watching for new/changed files to process

removebg_infusiblecoder p -w path/to/input path/to/output


### removebg_infusiblecoder `s`

Used to start http server.

removebg_infusiblecoder s --host 0.0.0.0 --port 5000 --log_level info


To see the complete endpoints documentation, go to: `http://localhost:5000/api`.

Remove the background from an image url

curl -s "http://localhost:5000/api/remove?url=http://input.png" -o output.png


Remove the background from an uploaded image

curl -s -F file=@/path/to/input.jpg "http://localhost:5000/api/remove" -o output.png


### removebg_infusiblecoder `b`

Process a sequence of RGB24 images from stdin. This is intended to be used with another program, such as FFMPEG, that outputs RGB24 pixel data to stdout, which is piped into the stdin of this program, although nothing prevents you from manually typing in images at stdin.

removebg_infusiblecoder b image_width image_height -o output_specifier


Arguments:

- image_width : width of input image(s)
- image_height : height of input image(s)
- output_specifier: printf-style specifier for output filenames, for example if `output-%03u.png`, then output files will be named `output-000.png`, `output-001.png`, `output-002.png`, etc. Output files will be saved in PNG format regardless of the extension specified. You can omit it to write results to stdout.

Example usage with FFMPEG:

ffmpeg -i input.mp4 -ss 10 -an -f rawvideo -pix_fmt rgb24 pipe:1 | removebg_infusiblecoder b 1280 720 -o folder/output-%03u.png


The width and height values must match the dimension of output images from FFMPEG. Note for FFMPEG, the "`-an -f rawvideo -pix_fmt rgb24 pipe:1`" part is required for the whole thing to work.


## Usage as a library

Input and output as bytes

```python
from removebg_infusiblecoder import remove

input_path = 'input.png'
output_path = 'output.png'

with open(input_path, 'rb') as i:
    with open(output_path, 'wb') as o:
        input = i.read()
        output = remove(input)
        o.write(output)

Input and output as a PIL image

from removebg_infusiblecoder import remove
from PIL import Image

input_path = 'input.png'
output_path = 'output.png'

input = Image.open(input_path)
output = remove(input)
output.save(output_path)

Input and output as a numpy array

from removebg_infusiblecoder import remove
import cv2

input_path = 'input.png'
output_path = 'output.png'

input = cv2.imread(input_path)
output = remove(input)
cv2.imwrite(output_path, output)

How to iterate over files in a performatic way

from pathlib import Path
from removebg_infusiblecoder import remove, new_session

session = new_session()

for file in Path('path/to/folder').glob('*.png'):
    input_path = str(file)
    output_path = str(file.parent / (file.stem + ".out.png"))

    with open(input_path, 'rb') as i:
        with open(output_path, 'wb') as o:
            input = i.read()
            output = remove(input, session=session)
            o.write(output)

Usage as a docker

Just replace the removebg_infusiblecoder command for docker run syedusama5556/removebg_infusiblecoder.

Try this:

docker run syedusama5556/removebg_infusiblecoder i path/to/input.png path/to/output.png

Models

All models are downloaded and saved in the user home folder in the .u2net directory.

The available models are:

  • modnet (download, source): A pre-trained model for general use cases modnet.

  • isnet-general-use (download, source): A pre-trained model for general use cases isnet-general-use.

  • u2net (download, source): A pre-trained model for general use cases.

  • u2netp (download, source): A lightweight version of u2net model.

  • u2net_human_seg (download, source): A pre-trained model for human segmentation.

  • u2net_cloth_seg (download, source): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.

  • silueta (download, source): Same as u2net but the size is reduced to 43Mb.

  • isnet-general-use (download, source): A new pre-trained model for general use cases.

  • isnet-anime (download, source): A high-accuracy segmentation for anime character.

  • sam (download encoder, download decoder, source): A pre-trained model for any use cases.

How to train your own model

If You need more fine tunned models try this: https://github.com/syedusama5556/removebg_infusiblecoder/issues/193#issuecomment-1055534289

Some video tutorials

References

Buy me a coffee

Liked some of my work? Buy me a coffee (or more likely a beer)

Buy Me A Coffee

License

Copyright (c) 2022-present Syed Usama Ahmad

Licensed under MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

removebg_infusiblecoder-0.0.11.tar.gz (44.3 kB view details)

Uploaded Source

Built Distribution

removebg_infusiblecoder-0.0.11-py3-none-any.whl (35.1 kB view details)

Uploaded Python 3

File details

Details for the file removebg_infusiblecoder-0.0.11.tar.gz.

File metadata

File hashes

Hashes for removebg_infusiblecoder-0.0.11.tar.gz
Algorithm Hash digest
SHA256 00ad9e891f316edbb98371ca6fc32d324e320241a823a3c55fc0f6d3f002c877
MD5 eca341cf2e502c59de983ea057a36f20
BLAKE2b-256 c08541e563fb9b153cebbf5203131248f7dc087321a29620086e04b94ccd6886

See more details on using hashes here.

File details

Details for the file removebg_infusiblecoder-0.0.11-py3-none-any.whl.

File metadata

File hashes

Hashes for removebg_infusiblecoder-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 b31e831b3853bdcaa781f3911de61de3d3a910b39aa1fc94bd4e7869077b0c3d
MD5 f1d22e8314028be21e913eee47097297
BLAKE2b-256 153837f631569c3a4058c88e422f9aae826bd04156eeba6f4394c475325d67e6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page