Skip to main content

Remove image background

Project description

removebg_infusiblecoder

Downloads Downloads Downloads License

removebg_infusiblecoder is a tool to remove images background.

If this project has helped you, please consider making a donation.

Requirements

python: >3.7, <3.11

Installation

CPU support:

pip install removebg-infusiblecoder

GPU support:

pip install removebg-infusiblecoder[gpu]

Usage as a cli

After the installation step you can use removebg_infusiblecoder just typing removebg_infusiblecoder in your terminal window.

The removebg_infusiblecoder command has 3 subcommands, one for each input type:

  • i for files
  • p for folders
  • s for http server

You can get help about the main command using:

removebg_infusiblecoder --help

As well, about all the subcommands using:

removebg_infusiblecoder <COMMAND> --help

removebg_infusiblecoder i

Used when input and output are files.

Remove the background from a remote image

curl -s http://input.png | removebg_infusiblecoder i > output.png

Remove the background from a local file

removebg_infusiblecoder i path/to/input.png path/to/output.png

Remove the background specifying a model

removebg_infusiblecoder -m u2netp i path/to/input.png path/to/output.png

Remove the background returning only the mask

removebg_infusiblecoder -om i path/to/input.png path/to/output.png

Remove the background applying an alpha matting

removebg_infusiblecoder -a i path/to/input.png path/to/output.png

removebg_infusiblecoder p

Used when input and output are folders.

Remove the background from all images in a folder

removebg_infusiblecoder p path/to/input path/to/output

Same as before, but watching for new/changed files to process

removebg_infusiblecoder p -w path/to/input path/to/output

removebg_infusiblecoder s

Used to start http server.

To see the complete endpoints documentation, go to: http://localhost:5000/docs.

Remove the background from an image url

curl -s "http://localhost:5000/?url=http://input.png" -o output.png

Remove the background from an uploaded image

curl -s -F file=@/path/to/input.jpg "http://localhost:5000"  -o output.png

Usage as a library

Input and output as bytes

from removebg_infusiblecoder import remove

input_path = 'input.png'
output_path = 'output.png'

with open(input_path, 'rb') as i:
    with open(output_path, 'wb') as o:
        input = i.read()
        output = remove(input)
        o.write(output)

Input and output as a PIL image

from removebg_infusiblecoder import remove
from PIL import Image

input_path = 'input.png'
output_path = 'output.png'

input = Image.open(input_path)
output = remove(input)
output.save(output_path)

Input and output as a numpy array

from removebg_infusiblecoder import remove
import cv2

input_path = 'input.png'
output_path = 'output.png'

input = cv2.imread(input_path)
output = remove(input)
cv2.imwrite(output_path, output)

How to iterate over files in a performatic way

from pathlib import Path
from removebg_infusiblecoder import remove, new_session

session = new_session()

for file in Path('path/to/folder').glob('*.png'):
    input_path = str(file)
    output_path = str(file.parent / (file.stem + ".out.png"))

    with open(input_path, 'rb') as i:
        with open(output_path, 'wb') as o:
            input = i.read()
            output = remove(input, session=session)
            o.write(output)

Usage as a docker

Just replace the removebg_infusiblecoder command for docker run syedusama5556/removebg_infusiblecoder.

Try this:

docker run syedusama5556/removebg_infusiblecoder i path/to/input.png path/to/output.png

Models

All models are downloaded and saved in the user home folder in the .u2net directory.

The available models are:

  • isnet-general-use (download, source): A pre-trained model for general use cases isnet-general-use.
  • u2net (download, source): A pre-trained model for general use cases.
  • u2netp (download, source): A lightweight version of u2net model.
  • u2net_human_seg (download, source): A pre-trained model for human segmentation.
  • u2net_cloth_seg (download, source): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.
  • silueta (download, source): Same as u2net but the size is reduced to 43Mb.

How to train your own model

If You need more fine tunned models try this: https://github.com/danielgatis/rembg/issues/193#issuecomment-1055534289

Some video tutorials

References

Buy me a coffee

Liked some of my work? Buy me a coffee (or more likely a beer)

Buy Me A Coffee

License

Copyright (c) 2022-present Syed Usama Ahmad

Licensed under MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

removebg_infusiblecoder-0.0.5.tar.gz (38.6 kB view details)

Uploaded Source

Built Distribution

removebg_infusiblecoder-0.0.5-py3-none-any.whl (20.9 kB view details)

Uploaded Python 3

File details

Details for the file removebg_infusiblecoder-0.0.5.tar.gz.

File metadata

File hashes

Hashes for removebg_infusiblecoder-0.0.5.tar.gz
Algorithm Hash digest
SHA256 dfc11bc8a2be4da74f460ac5308b4a8ba5e66df76833080563b82ae04fb7cfad
MD5 3ac6e12faf0bb462fce69786dd04c798
BLAKE2b-256 2508d4467a528d23009c7ac5905be6ab8262158f83eeabcaf21a9e6a2cfc08bc

See more details on using hashes here.

File details

Details for the file removebg_infusiblecoder-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for removebg_infusiblecoder-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b92caed9adcc96e31d5fccf7b02c3831f0a80c505c4e5f2b524368ae5cd8eff1
MD5 7ab561a04f677819cc14b363e3aa561b
BLAKE2b-256 d95e8284c5cb047fa7baa8c1479612886fc55f1413df20ddc287174b0010c0e1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page