No project description provided
Project description
Remyx AI command-line client
Installation
To install the Remyx AI CLI in Python virtual environment, run:
pip install remyxai
Token authentication
Remyx AI API requires authentication token, which can be obtained on this page: https://engine.remyx.ai/account
Provide api key to the CLI through an environment variable REMYXAI_API_KEY
.
export REMYXAI_API_KEY=<your-key-here>
Usage
Quickly get started with the following examples:
Model
List all models:
- cli command:
$ remyxai model list
- python command:
from remyxai.api import list_models
print(list_models())
Get the summary of a model:
- cli command:
$ remyxai model summarize --model_name=<your-model-name>
- python command:
from remyxai.api import get_model_summary
print(get_model_summary(model_name))
Delete a model by name:
- cli command:
$ remyxai model delete --model_name=<your-model-name>
- python command:
from remyxai.api import delete_model
model_name = "<your-model-name>"
print(delete_model(model_name))
Download and convert a model:
- cli command:
# possible model formats are "blob", "onnx", or "tflite"
$ remyxai model download --model_name=<your-model-name> --model_format="onnx"
- python command:
from remyxai.api import download_model
model_name = "<your-model-name>"
model_format = "onnx"
print(download_model(model_name, model_format))
Tasks
Train an image classifier:
- cli command:
$ remyxai classify --model_name=<your-model-name> --labels="comma,separated,labels" --model_size=<int between 1-5>
add the optional --hf_dataset
if you want to train with your own image dataset on 🤗. See the docs for more details
- python command:
from remyxai.api import train_classifier
model_name = "<your-model-name>"
labels = ["comma", "separated", "labels"]
model_size = 3 # use 1 for microcontrollers
# Optional HF dataset
hf_dataset = "your/hf-dataset"
print(train_classifier(model_name, labels, model_size, hf_dataset))
Train an object detector:
- cli command:
$ remyxai detect --model_name=<your-model-name> --labels="comma,separated,labels" --model_size=<int between 1-5>
add the optional --hf_dataset
if you want to train with your own image dataset on 🤗. See the docs for more details
- python command:
from remyxai.api import train_detector
model_name = "<your-model-name>"
labels = ["comma", "separated", "labels"]
model_size = 3
# Optional HF dataset
hf_dataset = "your/hf-dataset"
print(train_detector(model_name, labels, model_size, hf_dataset))
Train a text generator:
- cli command:
$ remyxai generate --model_name=<your-model-name> --hf_dataset=<your/hf-dataset>
Your Huggingface dataset should have two columns with naming conventions like:
-
"question", "response"
-
"question", "answer"
-
"input", "output"
-
"prompt", "response"
-
python command:
from remyxai.api import train_generator
model_name = "<your-model-name>"
hf_dataset = "your/hf-dataset"
print(train_generator(model_name, hf_dataset))
Deploy
Launch a Triton Server containerized deployment for your model. Currently supported for generate
models. More model types support coming soon!
System requirements
Please make sure you have Docker, Docker Compose, and the NVIDIA Container Toolkit are installed.
Deploy a model with:
- cli command:
# Bring up
remyxai deploy --model_name="<your-model-name>"
# Bring down
remyxai deploy down --model_name="<your-model-name>"
- python command:
from remyxai.api import deploy_model
model_name = "<your-model-name>"
deploy_model(model_name, action='up') # action can be "up" or "down"
And you can run inference with:
- cli command:
remyxai infer --model_name="<your-model-name>" --prompt="Your prompt here"
- python command:
from remyxai.api import run_inference
model_name = "<your-model-name>"
prompt="Your prompt here"
result, time_elapsed = run_inference(model_name, prompt, server_url="localhost:8000", model_version="1")
print(result)
User
Get user profile info:
- cli command:
$ remyxai user profile
- python command:
from remyxai.api import get_user_profile
print(get_user_profile())
Get user credit/subscription info:
- cli command:
$ remyxai user credits
- python command:
from remyxai.api import get_user_credits
print(get_user_credits())
Utils
Label images locally:
- cli command:
$ remyxai utils label --labels="comma,separated,labels" --image_dir="/path/to/image/dir"
- python command:
from remyxai.utils import labeler
model_name = "<your-model-name>"
labels = ["comma", "separated", "labels"]
image_dir = "/path/to/image/dir"
print(labeler(labels, image_dir, model_name))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file remyxai-0.1.8.tar.gz
.
File metadata
- Download URL: remyxai-0.1.8.tar.gz
- Upload date:
- Size: 17.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8d22879e578dc61fbffa9d022bc25d2ed2a42b883945d9898b1b786a7df7bb0 |
|
MD5 | b323c112e91b602e67eee3a430c83482 |
|
BLAKE2b-256 | 7a27495ae7633c207512bc86c99d787869403cb781568feb484734eaf7682849 |
File details
Details for the file remyxai-0.1.8-py3-none-any.whl
.
File metadata
- Download URL: remyxai-0.1.8-py3-none-any.whl
- Upload date:
- Size: 21.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c1dc41ee76545d06369f7f14a3a87110296094ebb60261ee2e5f4a075b97afaf |
|
MD5 | 4d14663f7cae3e0625f6c3fb01b52fc8 |
|
BLAKE2b-256 | dc3b740ea76a212e361574ee68b91cef55b5e3125890a58591ee57f522a58612 |