Skip to main content

No project description provided

Project description

Remyx AI command-line client

Installation

To install the Remyx AI CLI in Python virtual environment, run:

pip install remyxai

Token authentication

Remyx AI API requires authentication token, which can be obtained on this page: https://engine.remyx.ai/account

Provide api key to the CLI through an environment variable REMYXAI_API_KEY.

export REMYXAI_API_KEY=<your-key-here>

Usage

Quickly get started with the following examples:

Model

List all models:

  • cli command:
$ remyxai model list
  • python command:
from remyxai.api import list_models
print(list_models())

Get the summary of a model:

  • cli command:
$ remyxai model summarize --model_name=<your-model-name>
  • python command:
from remyxai.api import get_model_summary
print(get_model_summary(model_name))

Delete a model by name:

  • cli command:
$ remyxai model delete --model_name=<your-model-name>
  • python command:
from remyxai.api import delete_model

model_name = "<your-model-name>"
print(delete_model(model_name))

Download and convert a model:

  • cli command:
# possible model formats are "blob", "onnx", or "tflite"
$ remyxai model download --model_name=<your-model-name> --model_format="onnx"
  • python command:
from remyxai.api import download_model 

model_name = "<your-model-name>"
model_format = "onnx"
print(download_model(model_name, model_format))

Tasks

Train an image classifier:

  • cli command:
$ remyxai classify --model_name=<your-model-name> --labels="comma,separated,labels" --model_size=<int between 1-5>

add the optional --hf_dataset if you want to train with your own image dataset on 🤗. See the docs for more details

  • python command:
from remyxai.api import train_classifier

model_name = "<your-model-name>"
labels = ["comma", "separated", "labels"]
model_size = 3 # use 1 for microcontrollers

# Optional HF dataset
hf_dataset = "your/hf-dataset"

print(train_classifier(model_name, labels, model_size, hf_dataset))

Train an object detector:

  • cli command:
$ remyxai detect --model_name=<your-model-name> --labels="comma,separated,labels" --model_size=<int between 1-5>

add the optional --hf_dataset if you want to train with your own image dataset on 🤗. See the docs for more details

  • python command:
from remyxai.api import train_detector

model_name = "<your-model-name>"
labels = ["comma", "separated", "labels"]
model_size = 3

# Optional HF dataset
hf_dataset = "your/hf-dataset"
print(train_detector(model_name, labels, model_size, hf_dataset))

Train a text generator:

  • cli command:
$ remyxai generate --model_name=<your-model-name> --hf_dataset=<your/hf-dataset>

Your Huggingface dataset should have two columns with naming conventions like:

  • "question", "response"

  • "question", "answer"

  • "input", "output"

  • "prompt", "response"

  • python command:

from remyxai.api import train_generator

model_name = "<your-model-name>"
hf_dataset = "your/hf-dataset"

print(train_generator(model_name, hf_dataset))

Deploy

Launch a Triton Server containerized deployment for your model. Currently supported for generate models. More model types support coming soon!

System requirements

Please make sure you have Docker, Docker Compose, and the NVIDIA Container Toolkit are installed.

Deploy a model with:

  • cli command:
# Bring up
remyxai deploy --model_name="<your-model-name>"

# Bring down
remyxai deploy down --model_name="<your-model-name>"
  • python command:
from remyxai.api import deploy_model

model_name = "<your-model-name>"

deploy_model(model_name, action='up') # action can be "up" or "down"

And you can run inference with:

  • cli command:
remyxai infer --model_name="<your-model-name>" --prompt="Your prompt here"
  • python command:
from remyxai.api import run_inference

model_name = "<your-model-name>"
prompt="Your prompt here"

result, time_elapsed = run_inference(model_name, prompt, server_url="localhost:8000", model_version="1")
print(result)

User

Get user profile info:

  • cli command:
$ remyxai user profile
  • python command:
from remyxai.api import get_user_profile

print(get_user_profile())

Get user credit/subscription info:

  • cli command:
$ remyxai user credits
  • python command:
from remyxai.api import get_user_credits

print(get_user_credits())

Utils

Label images locally:

  • cli command:
$ remyxai utils label --labels="comma,separated,labels" --image_dir="/path/to/image/dir"
  • python command:
from remyxai.utils import labeler
model_name = "<your-model-name>"
labels = ["comma", "separated", "labels"]
image_dir = "/path/to/image/dir"
print(labeler(labels, image_dir, model_name))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

remyxai-0.1.8.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

remyxai-0.1.8-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file remyxai-0.1.8.tar.gz.

File metadata

  • Download URL: remyxai-0.1.8.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for remyxai-0.1.8.tar.gz
Algorithm Hash digest
SHA256 a8d22879e578dc61fbffa9d022bc25d2ed2a42b883945d9898b1b786a7df7bb0
MD5 b323c112e91b602e67eee3a430c83482
BLAKE2b-256 7a27495ae7633c207512bc86c99d787869403cb781568feb484734eaf7682849

See more details on using hashes here.

File details

Details for the file remyxai-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: remyxai-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for remyxai-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 c1dc41ee76545d06369f7f14a3a87110296094ebb60261ee2e5f4a075b97afaf
MD5 4d14663f7cae3e0625f6c3fb01b52fc8
BLAKE2b-256 dc3b740ea76a212e361574ee68b91cef55b5e3125890a58591ee57f522a58612

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page