Skip to main content

A set of tools to find Representative Periods.

Project description



RePeriods : a tool to find Representatives Periods

What is it?

RePeriods is a Python package that provides multiple methods to process time series in order to find Representative Periods.
Representative Periods (RPs) are a concept often used in the context of energy systems and optimization. They are particularly useful in situations where you want to model and analyze the behavior of a system over time, but it's computationally or practically infeasible to consider every individual time step. RPs are used to capture the essential characteristics of a time series in a more manageable way. Here are some specific applications where RPs can be useful:

  1. Energy System Modeling: RPs can be used in the modeling of energy systems, such as power grids or renewable energy generation, to represent the variability and uncertainty of energy sources over time. They provide a way to simplify complex time series data while preserving key features.

  2. Energy Management: In energy management systems, RPs can help make decisions about how to allocate energy resources optimally. By using RPs, you can make informed decisions about when to generate, store, or use energy based on representative patterns.

  3. Optimization: RPs are commonly used in optimization problems, where they can significantly reduce computational complexity. Instead of considering every time step, you can optimize over a set of RPs, which captures the essential behavior of the system.

  4. Long-Term Planning: When planning for the long term, RPs can help in scenarios like capacity expansion of power plants, designing energy storage systems, or making investment decisions in renewable energy projects. They allow you to consider long-term trends without needing high-resolution data.

  5. Risk Assessment: RPs can be used in risk assessment and scenario analysis. By considering a range of representative scenarios, you can evaluate the potential impacts of various uncertainties on your system.

  6. Control Strategies: In control systems, RPs can inform control strategies by providing a simplified representation of system dynamics. This can be especially useful in real-time control applications.

  7. Forecasting: RPs can be used as a basis for forecasting future energy generation or consumption. Forecasting based on representative patterns is often more computationally efficient than forecasting every time step.

  8. Research and Analysis: Researchers and analysts may use RPs to study the behavior of energy systems, identify trends, and gain insights into system performance without the computational burden of analyzing every data point.

In summary, RPs are a valuable tool in various aspects of energy system analysis, optimization, and decision-making. They allow you to strike a balance between capturing important temporal dynamics and managing computational complexity. The choice of RPs and how they are defined can have a significant impact on the accuracy and efficiency of models and systems in the field of energy management and beyond.

Table of Contents

Install

Can be installed with Pypi :

pip install reperiods-beta

Dependencies

reperiods requires,

  • Python >= 3.10
  • pandas>=2.0.3, for time series management
  • plotly>=5.15.0, for embedded visualisation
  • PuLP>=2.7.0, for optimization process
  • scikit-learn-extra>=0.3.0, for k-medoids process

License

Documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

reperiods-1.0.1.tar.gz (86.8 kB view details)

Uploaded Source

Built Distribution

reperiods-1.0.1-py3-none-any.whl (88.0 kB view details)

Uploaded Python 3

File details

Details for the file reperiods-1.0.1.tar.gz.

File metadata

  • Download URL: reperiods-1.0.1.tar.gz
  • Upload date:
  • Size: 86.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Windows/10

File hashes

Hashes for reperiods-1.0.1.tar.gz
Algorithm Hash digest
SHA256 fcc7dfc83e4a1ceebcb252767370f67bf341004abe95f8aa05a2c207efea6459
MD5 2a87118d37cff16daca5ee79a7011ae7
BLAKE2b-256 b6532a314cc5377807289a9b9c26759d3db0eab0dc5559ae04fa50a4d3afabb0

See more details on using hashes here.

File details

Details for the file reperiods-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: reperiods-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 88.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Windows/10

File hashes

Hashes for reperiods-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ff4f0c666c5a57a377200d57bf17d2bf47ccbe32895f3e53b129f8e391b66801
MD5 c9b427ae5ec11ade52ca2b7293960266
BLAKE2b-256 ec21e1c3da3f8008f2ce560573c04f1bfa9cdbd861f311a865958fcc79f5bdbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page