Skip to main content

Python client for Replicate

Project description

Replicate Python client

This is a Python client for Replicate. It lets you run models from your Python code or Jupyter notebook, and do various other things on Replicate.

👋 Check out an interactive version of this tutorial on Google Colab.

Open In Colab

Install

pip install replicate

Authenticate

Before running any Python scripts that use the API, you need to set your Replicate API token in your environment.

Grab your token from replicate.com/account and set it as an environment variable:

export REPLICATE_API_TOKEN=<your token>

We recommend not adding the token directly to your source code, because you don't want to put your credentials in source control. If anyone used your API key, their usage would be charged to your account.

Run a model

Create a new Python file and add the following code:

>>> import replicate
>>> replicate.run(
        "stability-ai/stable-diffusion:27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478",
        input={"prompt": "a 19th century portrait of a wombat gentleman"}
    )

['https://replicate.com/api/models/stability-ai/stable-diffusion/files/50fcac81-865d-499e-81ac-49de0cb79264/out-0.png']

Some models, like methexis-inc/img2prompt, receive images as inputs. To pass a file as an input, use a file handle or URL:

>>> output = replicate.run(
        "salesforce/blip:2e1dddc8621f72155f24cf2e0adbde548458d3cab9f00c0139eea840d0ac4746",
        input={"image": open("path/to/mystery.jpg", "rb")},
    )

"an astronaut riding a horse"

Run a model in the background

You can start a model and run it in the background:

>>> model = replicate.models.get("kvfrans/clipdraw")
>>> version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
>>> prediction = replicate.predictions.create(
    version=version,
    input={"prompt":"Watercolor painting of an underwater submarine"})

>>> prediction
Prediction(...)

>>> prediction.status
'starting'

>>> dict(prediction)
{"id": "...", "status": "starting", ...}

>>> prediction.reload()
>>> prediction.status
'processing'

>>> print(prediction.logs)
iteration: 0, render:loss: -0.6171875
iteration: 10, render:loss: -0.92236328125
iteration: 20, render:loss: -1.197265625
iteration: 30, render:loss: -1.3994140625

>>> prediction.wait()

>>> prediction.status
'succeeded'

>>> prediction.output
'https://.../output.png'

Run a model in the background and get a webhook

You can run a model and get a webhook when it completes, instead of waiting for it to finish:

model = replicate.models.get("kvfrans/clipdraw")
version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
prediction = replicate.predictions.create(
    version=version,
    input={"prompt":"Watercolor painting of an underwater submarine"},
    webhook="https://example.com/your-webhook",
    webhook_events_filter=["completed"]
)

Compose models into a pipeline

You can run a model and feed the output into another model:

laionide = replicate.models.get("afiaka87/laionide-v4").versions.get("b21cbe271e65c1718f2999b038c18b45e21e4fba961181fbfae9342fc53b9e05")
swinir = replicate.models.get("jingyunliang/swinir").versions.get("660d922d33153019e8c263a3bba265de882e7f4f70396546b6c9c8f9d47a021a")
image = laionide.predict(prompt="avocado armchair")
upscaled_image = swinir.predict(image=image)

Get output from a running model

Run a model and get its output while it's running:

iterator = replicate.run(
    "pixray/text2image:5c347a4bfa1d4523a58ae614c2194e15f2ae682b57e3797a5bb468920aa70ebf",
    input={"prompts": "san francisco sunset"}
)

for image in iterator:
    display(image)

Cancel a prediction

You can cancel a running prediction:

>>> model = replicate.models.get("kvfrans/clipdraw")
>>> version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
>>> prediction = replicate.predictions.create(
        version=version,
        input={"prompt":"Watercolor painting of an underwater submarine"}
    )

>>> prediction.status
'starting'

>>> prediction.cancel()

>>> prediction.reload()
>>> prediction.status
'canceled'

List predictions

You can list all the predictions you've run:

replicate.predictions.list()
# [<Prediction: 8b0ba5ab4d85>, <Prediction: 494900564e8c>]

Load output files

Output files are returned as HTTPS URLs. You can load an output file as a buffer:

import replicate
from urllib.request import urlretrieve

model = replicate.models.get("stability-ai/stable-diffusion")
version = model.versions.get("27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478")
out = version.predict(prompt="wavy colorful abstract patterns, cgsociety")
urlretrieve(out[0], "/tmp/out.png")
background = Image.open("/tmp/out.png")

Development

See CONTRIBUTING.md

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

replicate-0.12.0.tar.gz (24.8 kB view details)

Uploaded Source

Built Distribution

replicate-0.12.0-py3-none-any.whl (24.3 kB view details)

Uploaded Python 3

File details

Details for the file replicate-0.12.0.tar.gz.

File metadata

  • Download URL: replicate-0.12.0.tar.gz
  • Upload date:
  • Size: 24.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for replicate-0.12.0.tar.gz
Algorithm Hash digest
SHA256 7028fb1bc37eaf02cf0d1d0d3c9bb5e8bfb3e9c63837a5aac254b809cbcc49e4
MD5 02e50c70740c8990144ac9b3900a3c64
BLAKE2b-256 3189016c431209d77edad3f8c4604f615700d6d9fd1cbe858913844a8e302011

See more details on using hashes here.

File details

Details for the file replicate-0.12.0-py3-none-any.whl.

File metadata

  • Download URL: replicate-0.12.0-py3-none-any.whl
  • Upload date:
  • Size: 24.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for replicate-0.12.0-py3-none-any.whl
Algorithm Hash digest
SHA256 804ebc02c604e2ee03d6a56dd96a538a6c83f03d46d3a8170d18d745a75242a2
MD5 085e4cc1260203896ccf67559a49f972
BLAKE2b-256 f68f80baebb58ad21dfbcf24abdc10a7b9ed764c47dc46f0083d358557018ce3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page