Skip to main content

Python client for Replicate

Reason this release was yanked:

bug

Project description

Replicate Python client

This is a Python client for Replicate. It lets you run models from your Python code or Jupyter notebook, and do various other things on Replicate.

👋 Check out an interactive version of this tutorial on Google Colab.

Open In Colab

Requirements

  • Python 3.8+

Install

pip install replicate

Authenticate

Before running any Python scripts that use the API, you need to set your Replicate API token in your environment.

Grab your token from replicate.com/account and set it as an environment variable:

export REPLICATE_API_TOKEN=<your token>

We recommend not adding the token directly to your source code, because you don't want to put your credentials in source control. If anyone used your API key, their usage would be charged to your account.

Run a model

Create a new Python file and add the following code:

>>> import replicate
>>> replicate.run(
        "stability-ai/stable-diffusion:27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478",
        input={"prompt": "a 19th century portrait of a wombat gentleman"}
    )

['https://replicate.com/api/models/stability-ai/stable-diffusion/files/50fcac81-865d-499e-81ac-49de0cb79264/out-0.png']

Some models, like methexis-inc/img2prompt, receive images as inputs. To pass a file as an input, use a file handle or URL:

>>> output = replicate.run(
        "salesforce/blip:2e1dddc8621f72155f24cf2e0adbde548458d3cab9f00c0139eea840d0ac4746",
        input={"image": open("path/to/mystery.jpg", "rb")},
    )

"an astronaut riding a horse"

Run a model in the background

You can start a model and run it in the background:

>>> model = replicate.models.get("kvfrans/clipdraw")
>>> version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
>>> prediction = replicate.predictions.create(
    version=version,
    input={"prompt":"Watercolor painting of an underwater submarine"})

>>> prediction
Prediction(...)

>>> prediction.status
'starting'

>>> dict(prediction)
{"id": "...", "status": "starting", ...}

>>> prediction.reload()
>>> prediction.status
'processing'

>>> print(prediction.logs)
iteration: 0, render:loss: -0.6171875
iteration: 10, render:loss: -0.92236328125
iteration: 20, render:loss: -1.197265625
iteration: 30, render:loss: -1.3994140625

>>> prediction.wait()

>>> prediction.status
'succeeded'

>>> prediction.output
'https://.../output.png'

Run a model in the background and get a webhook

You can run a model and get a webhook when it completes, instead of waiting for it to finish:

model = replicate.models.get("kvfrans/clipdraw")
version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
prediction = replicate.predictions.create(
    version=version,
    input={"prompt":"Watercolor painting of an underwater submarine"},
    webhook="https://example.com/your-webhook",
    webhook_events_filter=["completed"]
)

Compose models into a pipeline

You can run a model and feed the output into another model:

laionide = replicate.models.get("afiaka87/laionide-v4").versions.get("b21cbe271e65c1718f2999b038c18b45e21e4fba961181fbfae9342fc53b9e05")
swinir = replicate.models.get("jingyunliang/swinir").versions.get("660d922d33153019e8c263a3bba265de882e7f4f70396546b6c9c8f9d47a021a")
image = laionide.predict(prompt="avocado armchair")
upscaled_image = swinir.predict(image=image)

Get output from a running model

Run a model and get its output while it's running:

iterator = replicate.run(
    "pixray/text2image:5c347a4bfa1d4523a58ae614c2194e15f2ae682b57e3797a5bb468920aa70ebf",
    input={"prompts": "san francisco sunset"}
)

for image in iterator:
    display(image)

Cancel a prediction

You can cancel a running prediction:

>>> model = replicate.models.get("kvfrans/clipdraw")
>>> version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
>>> prediction = replicate.predictions.create(
        version=version,
        input={"prompt":"Watercolor painting of an underwater submarine"}
    )

>>> prediction.status
'starting'

>>> prediction.cancel()

>>> prediction.reload()
>>> prediction.status
'canceled'

List predictions

You can list all the predictions you've run:

replicate.predictions.list()
# [<Prediction: 8b0ba5ab4d85>, <Prediction: 494900564e8c>]

Load output files

Output files are returned as HTTPS URLs. You can load an output file as a buffer:

import replicate
from urllib.request import urlretrieve

model = replicate.models.get("stability-ai/stable-diffusion")
version = model.versions.get("27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478")
out = version.predict(prompt="wavy colorful abstract patterns, cgsociety")
urlretrieve(out[0], "/tmp/out.png")
background = Image.open("/tmp/out.png")

Development

See CONTRIBUTING.md

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

replicate-0.15.0.tar.gz (26.6 kB view details)

Uploaded Source

Built Distribution

replicate-0.15.0-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file replicate-0.15.0.tar.gz.

File metadata

  • Download URL: replicate-0.15.0.tar.gz
  • Upload date:
  • Size: 26.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for replicate-0.15.0.tar.gz
Algorithm Hash digest
SHA256 9f48ad0ff79b1db2fe15a06ddd0feabca743d37dc936691b078e1a7b5a67d6d0
MD5 23c4a936ef3de88f656cf4e0dd2ec203
BLAKE2b-256 5f78616199444467dda4113c8ded732a4a856ca30121202ce6f2d8f80b256964

See more details on using hashes here.

File details

Details for the file replicate-0.15.0-py3-none-any.whl.

File metadata

  • Download URL: replicate-0.15.0-py3-none-any.whl
  • Upload date:
  • Size: 25.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for replicate-0.15.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b3af01fd6c7031ab090eacb5efbabb8bd8ffec37a0d7a4f6543e9232f2c15828
MD5 c32b3562b6b32354fbcd0e701c0031de
BLAKE2b-256 957e47f34ea28eed96e494f65f3e5925d52b48d1cccf8bdfc8f3148193424fef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page