Skip to main content

Python client for Replicate

Project description

Replicate Python client

This is a Python client for Replicate. It lets you run models from your Python code or Jupyter notebook, and do various other things on Replicate.

👋 Check out an interactive version of this tutorial on Google Colab.

Open In Colab

Requirements

  • Python 3.8+

Install

pip install replicate

Authenticate

Before running any Python scripts that use the API, you need to set your Replicate API token in your environment.

Grab your token from replicate.com/account and set it as an environment variable:

export REPLICATE_API_TOKEN=<your token>

We recommend not adding the token directly to your source code, because you don't want to put your credentials in source control. If anyone used your API key, their usage would be charged to your account.

Run a model

Create a new Python file and add the following code:

>>> import replicate
>>> replicate.run(
        "stability-ai/stable-diffusion:27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478",
        input={"prompt": "a 19th century portrait of a wombat gentleman"}
    )

['https://replicate.com/api/models/stability-ai/stable-diffusion/files/50fcac81-865d-499e-81ac-49de0cb79264/out-0.png']

Some models, like methexis-inc/img2prompt, receive images as inputs. To pass a file as an input, use a file handle or URL:

>>> output = replicate.run(
        "salesforce/blip:2e1dddc8621f72155f24cf2e0adbde548458d3cab9f00c0139eea840d0ac4746",
        input={"image": open("path/to/mystery.jpg", "rb")},
    )

"an astronaut riding a horse"

[!NOTE] You can also use the Replicate client asynchronously by prepending async_ to the method name.

Here's an example of how to run several predictions concurrently and wait for them all to complete:

import asyncio
import replicate

# https://replicate.com/stability-ai/sdxl
model_version = "stability-ai/sdxl:39ed52f2a78e934b3ba6e2a89f5b1c712de7dfea535525255b1aa35c5565e08b"
prompts = [
    f"A chariot pulled by a team of {count} rainbow unicorns"
    for count in ["two", "four", "six", "eight"]
]

async with asyncio.TaskGroup() as tg:
    tasks = [
        tg.create_task(replicate.async_run(model_version, input={"prompt": prompt}))
        for prompt in prompts
    ]

results = await asyncio.gather(*tasks)
print(results)

Run a model in the background

You can start a model and run it in the background:

>>> model = replicate.models.get("kvfrans/clipdraw")
>>> version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
>>> prediction = replicate.predictions.create(
    version=version,
    input={"prompt":"Watercolor painting of an underwater submarine"})

>>> prediction
Prediction(...)

>>> prediction.status
'starting'

>>> dict(prediction)
{"id": "...", "status": "starting", ...}

>>> prediction.reload()
>>> prediction.status
'processing'

>>> print(prediction.logs)
iteration: 0, render:loss: -0.6171875
iteration: 10, render:loss: -0.92236328125
iteration: 20, render:loss: -1.197265625
iteration: 30, render:loss: -1.3994140625

>>> prediction.wait()

>>> prediction.status
'succeeded'

>>> prediction.output
'https://.../output.png'

Run a model in the background and get a webhook

You can run a model and get a webhook when it completes, instead of waiting for it to finish:

model = replicate.models.get("ai-forever/kandinsky-2.2")
version = model.versions.get("ea1addaab376f4dc227f5368bbd8eff901820fd1cc14ed8cad63b29249e9d463")
prediction = replicate.predictions.create(
    version=version,
    input={"prompt":"Watercolor painting of an underwater submarine"},
    webhook="https://example.com/your-webhook",
    webhook_events_filter=["completed"]
)

For details on receiving webhooks, see replicate.com/docs/webhooks.

Compose models into a pipeline

You can run a model and feed the output into another model:

laionide = replicate.models.get("afiaka87/laionide-v4").versions.get("b21cbe271e65c1718f2999b038c18b45e21e4fba961181fbfae9342fc53b9e05")
swinir = replicate.models.get("jingyunliang/swinir").versions.get("660d922d33153019e8c263a3bba265de882e7f4f70396546b6c9c8f9d47a021a")
image = laionide.predict(prompt="avocado armchair")
upscaled_image = swinir.predict(image=image)

Get output from a running model

Run a model and get its output while it's running:

iterator = replicate.run(
    "pixray/text2image:5c347a4bfa1d4523a58ae614c2194e15f2ae682b57e3797a5bb468920aa70ebf",
    input={"prompts": "san francisco sunset"}
)

for image in iterator:
    display(image)

Cancel a prediction

You can cancel a running prediction:

>>> model = replicate.models.get("kvfrans/clipdraw")
>>> version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
>>> prediction = replicate.predictions.create(
        version=version,
        input={"prompt":"Watercolor painting of an underwater submarine"}
    )

>>> prediction.status
'starting'

>>> prediction.cancel()

>>> prediction.reload()
>>> prediction.status
'canceled'

List predictions

You can list all the predictions you've run:

replicate.predictions.list()
# [<Prediction: 8b0ba5ab4d85>, <Prediction: 494900564e8c>]

Lists of predictions are paginated. You can get the next page of predictions by passing the next property as an argument to the list method:

page1 = replicate.predictions.list()

if page1.next:
    page2 = replicate.predictions.list(page1.next)

Load output files

Output files are returned as HTTPS URLs. You can load an output file as a buffer:

import replicate
from urllib.request import urlretrieve

model = replicate.models.get("stability-ai/stable-diffusion")
version = model.versions.get("27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478")
out = version.predict(prompt="wavy colorful abstract patterns, cgsociety")
urlretrieve(out[0], "/tmp/out.png")
background = Image.open("/tmp/out.png")

List models

You can the models you've created:

replicate.models.list()

Lists of models are paginated. You can get the next page of models by passing the next property as an argument to the list method. Here's how you can get all the models you've created:

models = []
page = replicate.models.list()

while page:
    models.extend(page.results)
    page = replicate.models.list(page.next) if page.next else None

You can also find collections of featured models on Replicate:

>>> collections = replicate.collections.list()
>>> collections[0].slug
"vision-models"
>>> collections[0].description
"Multimodal large language models with vision capabilities like object detection and optical character recognition (OCR)"

>>> replicate.collections.get("text-to-image").models
[<Model: stability-ai/sdxl>, ...]

Create a model

You can create a model for a user or organization with a given name, visibility, and hardware SKU:

import replicate

model = replicate.models.create(
    owner="your-username",
    name="my-model",
    visibility="public",
    hardware="gpu-a40-large"
)

Here's how to list of all the available hardware for running models on Replicate:

>>> [hw.sku for hw in replicate.hardware.list()]
['cpu', 'gpu-t4', 'gpu-a40-small', 'gpu-a40-large']

Development

See CONTRIBUTING.md

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

replicate-0.19.0.tar.gz (33.9 kB view details)

Uploaded Source

Built Distribution

replicate-0.19.0-py3-none-any.whl (31.6 kB view details)

Uploaded Python 3

File details

Details for the file replicate-0.19.0.tar.gz.

File metadata

  • Download URL: replicate-0.19.0.tar.gz
  • Upload date:
  • Size: 33.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for replicate-0.19.0.tar.gz
Algorithm Hash digest
SHA256 4cb398f7be46354ae485b3520f7fc080bb0d1636792e853760e2d5277299f5ac
MD5 8ffdd394112208e2657d663ce08192f0
BLAKE2b-256 819b3d366c897d079bd4e01574907875c5aa5c14d2838b608ce5588efaffe30f

See more details on using hashes here.

File details

Details for the file replicate-0.19.0-py3-none-any.whl.

File metadata

  • Download URL: replicate-0.19.0-py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for replicate-0.19.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5c72def22b2e9f332ddfb8f5d78fd27864fbb3ac2cd612a962e9c94c05ecf82e
MD5 6a45c6e7fedabacc64df9d180a2d0d2a
BLAKE2b-256 d2bdaf61124957213ce616fd7d7138da07c61aeaeb270bf56ddb91af22335fea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page