Skip to main content

Python client for Replicate

Project description

Replicate Python client

This is a Python client for Replicate. It lets you run models from your Python code or Jupyter notebook, and do various other things on Replicate.

Install

pip install replicate

Authenticate

Before running any Python scripts that use the API, you need to set your Replicate API token in your environment.

Grab your token from replicate.com/account and set it as an environment variable:

export REPLICATE_API_TOKEN=<your token>

We recommend not adding the token directly to your source code, because you don't want to put your credentials in source control. If anyone used your API key, their usage would be charged to your account.

Run a model

Create a new Python file and add the following code:

>>> import replicate
>>> replicate.run(
        "stability-ai/stable-diffusion:27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478",
        input={"prompt": "a 19th century portrait of a wombat gentleman"}
    )

['https://replicate.com/api/models/stability-ai/stable-diffusion/files/50fcac81-865d-499e-81ac-49de0cb79264/out-0.png']

Some models, like methexis-inc/img2prompt, receive images as inputs. To pass a file as an input, use a file handle or URL:

>>> output = replicate.run(
        "salesforce/blip:2e1dddc8621f72155f24cf2e0adbde548458d3cab9f00c0139eea840d0ac4746",
        input={"image": open("path/to/mystery.jpg", "rb")},
    )

"an astronaut riding a horse"

Run a model in the background

You can start a model and run it in the background:

>>> model = replicate.models.get("kvfrans/clipdraw")
>>> version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
>>> prediction = replicate.predictions.create(
    version=version,
    input={"prompt":"Watercolor painting of an underwater submarine"})

>>> prediction
Prediction(...)

>>> prediction.status
'starting'

>>> dict(prediction)
{"id": "...", "status": "starting", ...}

>>> prediction.reload()
>>> prediction.status
'processing'

>>> print(prediction.logs)
iteration: 0, render:loss: -0.6171875
iteration: 10, render:loss: -0.92236328125
iteration: 20, render:loss: -1.197265625
iteration: 30, render:loss: -1.3994140625

>>> prediction.wait()

>>> prediction.status
'succeeded'

>>> prediction.output
'https://.../output.png'

Run a model in the background and get a webhook

You can run a model and get a webhook when it completes, instead of waiting for it to finish:

model = replicate.models.get("kvfrans/clipdraw")
version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
prediction = replicate.predictions.create(
    version=version,
    input={"prompt":"Watercolor painting of an underwater submarine"},
    webhook="https://example.com/your-webhook",
    webhook_events_filter=["completed"]
)

Compose models into a pipeline

You can run a model and feed the output into another model:

laionide = replicate.models.get("afiaka87/laionide-v4").versions.get("b21cbe271e65c1718f2999b038c18b45e21e4fba961181fbfae9342fc53b9e05")
swinir = replicate.models.get("jingyunliang/swinir").versions.get("660d922d33153019e8c263a3bba265de882e7f4f70396546b6c9c8f9d47a021a")
image = laionide.predict(prompt="avocado armchair")
upscaled_image = swinir.predict(image=image)

Get output from a running model

Run a model and get its output while it's running:

iterator = replicate.run(
    "pixray/text2image:5c347a4bfa1d4523a58ae614c2194e15f2ae682b57e3797a5bb468920aa70ebf",
    input={"prompts": "san francisco sunset"}
)

for image in iterator:
    display(image)

Cancel a prediction

You can cancel a running prediction:

>>> model = replicate.models.get("kvfrans/clipdraw")
>>> version = model.versions.get("5797a99edc939ea0e9242d5e8c9cb3bc7d125b1eac21bda852e5cb79ede2cd9b")
>>> prediction = replicate.predictions.create(
        version=version,
        input={"prompt":"Watercolor painting of an underwater submarine"}
    )

>>> prediction.status
'starting'

>>> prediction.cancel()

>>> prediction.reload()
>>> prediction.status
'canceled'

List predictions

You can list all the predictions you've run:

replicate.predictions.list()
# [<Prediction: 8b0ba5ab4d85>, <Prediction: 494900564e8c>]

Load output files

Output files are returned as HTTPS URLs. You can load an output file as a buffer:

import replicate
from urllib.request import urlretrieve

model = replicate.models.get("stability-ai/stable-diffusion")
version = model.versions.get("27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478")
out = version.predict(prompt="wavy colorful abstract patterns, cgsociety"
urlretrieve(out[0], "/tmp/out.png")
background = Image.open("/tmp/out.png")

Development

See CONTRIBUTING.md

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

replicate-0.6.0.tar.gz (15.9 kB view details)

Uploaded Source

File details

Details for the file replicate-0.6.0.tar.gz.

File metadata

  • Download URL: replicate-0.6.0.tar.gz
  • Upload date:
  • Size: 15.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for replicate-0.6.0.tar.gz
Algorithm Hash digest
SHA256 6e6ca31ae165a6fd4151aa67b1f7517b8ce671001900b29941b197b30edf930a
MD5 ccc4b3d03bd85074d750ebc7d39d2716
BLAKE2b-256 45675e90899d91443f6967b7f4dd103094063ba0e4630d7c9ab93e739cc65411

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page