Skip to main content

Awesome repltilian created by kmkolasinski

Project description

repltilian

codecov CI

Interactive Swift REPL wrapper for Python

Install it from PyPI

https://pypi.org/project/repltilian/

pip install repltilian

Basic Usage

from repltilian import SwiftREPL
# Create a new Swift REPL process
repl = SwiftREPL()
# Run some code in the Swift REPL
repl.run("var values = [1, 2, 3, 4, 5]")
# Get the value of a variable from Swift to Python
assert repl.vars["values"].get() == [1, 2, 3, 4, 5]
# Create or update variable
repl.vars.set("values", "Array<Int>", list(range(1000)))
# Run some more code again
repl.run("""
let offset = -1
let newValues = values.map { $0 * $0 + offset}
""")
assert repl.vars["newValues"].get()[:5] == [-1, 0, 3, 8, 15]
repl.close()

Auto reload file content

from repltilian import SwiftREPL
# Create a new Swift REPL process
repl = SwiftREPL()
# Add a file to the REPL that will be reloaded on every run
repl.add_reload_file("demo.swift")

repl.run("""
var p1 = Point<Float>(x: 1, y: 2)
var p2 = Point<Float>(x: 2, y: 1)
var p3 = p1 + p2
""", autoreload=True)
assert repl.vars["p3"].get() == {'x': 3, 'y': 3}

Line Profiling

from repltilian import SwiftREPL
repl = SwiftREPL()
repl.add_reload_file("demo.swift")
# Run any command to import demo.swift code
repl.run("", autoreload=True)
repl.vars.set("query", "Array<Point<Float>>", [{'x': -1.5, 'y': -1.2}]*100)
repl.vars.set("dataset", "Array<Point<Float>>", [{'x': -1.5, 'y': -1.2}]*5000)

repl.options.output_hide_variables = True
repl.run("""
let newResult = findKNearestNeighbors(query: query, dataset: dataset, k: 10)
""")
assert len(repl.vars["newResult"].get()) == 100
assert len(repl.vars["newResult"].get()[0]) == 10

# run line profiling on the function findKNearestNeighbors
repl.options.output_hide_variables = True
repl.line_profile(
"""
let newResult = findKNearestNeighbors(query: query, dataset: dataset, k: 10)
""",
function_name="findKNearestNeighbors",
source_path="demo.swift"
)
repl.close()

Expected output:

Timer unit: 1 ns
Total time: 0.561 s
Function: findKNearestNeighbors at line 38
Line #      Hits         Time   Per Hit   % Time  Line Contents
===============================================================
     0          1     0.000000  0.000000      0.0%      var results: [SearchResult<T>] = []
     1          1     0.560541  0.560541    100.0%      for queryPoint in query {
     2        100     0.000006  0.000000      0.0%          var distances: [Neighbor<T>] = []
     3        100     0.000002  0.000000      0.0%          // Calculate distances to all dataPoints {
     4        100     0.517329  0.005173     92.3%          for dataPoint in dataset {
     5     500000     0.013336  0.000000      2.4%              let dx = queryPoint.x - dataPoint.x
     6     500000     0.010027  0.000000      1.8%              let dy = queryPoint.y - dataPoint.y
     7     500000     0.012375  0.000000      2.2%              let distance = (dx * dx + dy * dy).squareRoot()
     8     500000     0.042148  0.000000      7.5%              distances.append(Neighbor(point: dataPoint, distance: distance))
     9          0     0.000000  0.000000      0.0%          }
    10        100     0.000003  0.000000      0.0%          // Sort neighbors by distance
    11        100     0.042651  0.000427      7.6%          distances.sort { $0.distance < $1.distance }
    12        100     0.000002  0.000000      0.0%          // Select the first k neighbors
    13        100     0.000195  0.000002      0.0%          let kNeighbors = Array(distances.prefix(k))
    14        100     0.000002  0.000000      0.0%          // Add to results
    15        100     0.000021  0.000000      0.0%          let searchResult = SearchResult(queryPoint: queryPoint, neighbors: kNeighbors)
    16        100     0.000020  0.000000      0.0%          results.append(searchResult)
    17          0     0.000000  0.000000      0.0%      }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

repltilian-1.4.0.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

repltilian-1.4.0-py3-none-any.whl (14.0 kB view details)

Uploaded Python 3

File details

Details for the file repltilian-1.4.0.tar.gz.

File metadata

  • Download URL: repltilian-1.4.0.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for repltilian-1.4.0.tar.gz
Algorithm Hash digest
SHA256 29979d16aa62134d50dfb3ba6b91daea3c7ba8b7581dcfdac16152e11a622b3d
MD5 7ccdf4b9ce65a31a16c114b4dd35b946
BLAKE2b-256 55e21d1ee5170118e444f193a69b21d014d35b76691191d27f3cab84c44cbd5b

See more details on using hashes here.

File details

Details for the file repltilian-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: repltilian-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 14.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for repltilian-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3dd521ea46ee4ab3d92d25858a74c719802b9e81b3766663aac376e0f7c0a2c7
MD5 5e234334ce6e5bc3591ad4c6a545aa55
BLAKE2b-256 f2e90a00da9254fd8e9424c098bb1e0b5fa1a8c06f62ccbd10ea946d069b7afb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page