Skip to main content

Fast differentiable resizing and warping of arbitrary grids

Project description

Hugues Hoppe    Aug 2022.

[Open in Colab]   [Kaggle]   [MyBinder]   [DeepNote]   [GitHub source]   [API docs]   [PyPI package]

The notebook resampler_notebook.ipynb demonstrates the resampler library and contains documentation, usage examples, unit tests, and experiments.

Overview

The resampler library enables fast differentiable resizing and warping of arbitrary grids. It supports:

  • grids of any dimension (e.g., 1D, 2D images, 3D video, 4D batches of videos), containing

  • samples of any shape (e.g., scalars, colors, motion vectors, Jacobian matrices) and

  • any numeric type (e.g., uint8, float64, complex128)

  • within several array libraries (numpy, tensorflow, torch, and jax);

  • either 'dual' ("half-integer") or 'primal' grid-type for each dimension;

  • many boundary rules, specified per dimension, extensible via subclassing;

  • an extensible set of filter kernels, selectable per dimension;

  • optional gamma transfer functions for correct linear-space filtering;

  • prefiltering for accurate antialiasing when resize downsampling;

  • efficient backpropagation of gradients for tensorflow, torch, and jax;

  • few dependencies (only numpy and scipy) and no C extension code, yet

  • faster resizing than C++ implementations in tf.image and torch.nn.

A key strategy is to leverage existing sparse matrix representations and operations.

Example usage

!pip install -q mediapy numpy resampler

import mediapy as media
import numpy as np
import resampler
array = np.random.default_rng(1).random((4, 6, 3))  # 4x6 RGB image.
upsampled = resampler.resize(array, (128, 192))  # To 128x192 resolution.
media.show_images({'4x6': array, '128x192': upsampled}, height=128)
image = media.read_image('https://github.com/hhoppe/data/raw/main/image.png')
downsampled = resampler.resize(image, (32, 32))
media.show_images({'128x128': image, '32x32': downsampled}, height=128)
import matplotlib.pyplot as plt
array = [3.0, 5.0, 8.0, 7.0]  # 4 source samples in 1D.
new_dual = resampler.resize(array, (32,))  # (default gridtype='dual') 8x resolution.
new_primal = resampler.resize(array, (25,), gridtype='primal')  # 8x resolution.

_, axs = plt.subplots(1, 2, figsize=(7, 1.5))
axs[0].set_title("gridtype='dual'")
axs[0].plot((np.arange(len(array)) + 0.5) / len(array), array, 'o')
axs[0].plot((np.arange(len(new_dual)) + 0.5) / len(new_dual), new_dual, '.')
axs[1].set_title("gridtype='primal'")
axs[1].plot(np.arange(len(array)) / (len(array) - 1), array, 'o')
axs[1].plot(np.arange(len(new_primal)) / (len(new_primal) - 1), new_primal, '.')
plt.show()
batch_size = 4
batch_of_images = media.moving_circle((16, 16), batch_size)
upsampled = resampler.resize(batch_of_images, (batch_size, 64, 64))
media.show_videos({'original': batch_of_images, 'upsampled': upsampled}, fps=1)

original

upsampled

Most examples above use the default resize() settings:

  • gridtype='dual' for both source and destination arrays,
  • boundary='auto' which uses 'reflect' for upsampling and 'clamp' for downsampling,
  • filter='lanczos3' (a Lanczos kernel with radius 3),
  • gamma=None which by default uses the 'power2' transfer function for the uint8 image in the second example,
  • scale=1.0, translate=0.0 (no domain transformation),
  • default precision and output dtype.

Advanced usage:

Map an image to a wider grid using custom scale and translate vectors, with horizontal 'reflect' and vertical 'natural' boundary rules, providing a constant value for the exterior, using different filters (Lanczos and O-MOMS) in the two dimensions, disabling gamma correction, performing computations in double-precision, and returning an output array in single-precision:

new = resampler.resize(
    image, (128, 512), boundary=('natural', 'reflect'), cval=(0.2, 0.7, 0.3),
    filter=('lanczos3', 'omoms5'), gamma='identity', scale=(0.8, 0.25),
    translate=(0.1, 0.35), precision='float64', dtype='float32')
media.show_images({'image': image, 'new': new})

Warp an image by transforming it using polar coordinates:

shape = image.shape[:2]
yx = ((np.indices(shape).T + 0.5) / shape - 0.5).T  # [-0.5, 0.5]^2
radius, angle = np.linalg.norm(yx, axis=0), np.arctan2(*yx)
angle += (0.8 - radius).clip(0, 1) * 2.0 - 0.6
coords = np.dstack((np.sin(angle) * radius, np.cos(angle) * radius)) + 0.5
resampled = resampler.resample(image, coords, boundary='constant')
media.show_images({'image': image, 'resampled': resampled})

Limitations:

  • Filters are assumed to be separable.
  • Although resize implements prefiltering, resample does not yet have it (and therefore may have aliased results if downsampling).
  • Differentiability is only with respect to the grid values, not wrt the resize shape, scale, translation, or the resampling coordinates.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resampler-0.8.7.tar.gz (48.1 kB view details)

Uploaded Source

Built Distribution

resampler-0.8.7-py3-none-any.whl (45.9 kB view details)

Uploaded Python 3

File details

Details for the file resampler-0.8.7.tar.gz.

File metadata

  • Download URL: resampler-0.8.7.tar.gz
  • Upload date:
  • Size: 48.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for resampler-0.8.7.tar.gz
Algorithm Hash digest
SHA256 aaaedd610ab52683f444c177227a0664abf65012a5805d615dc51ef6a5b0ff1f
MD5 98c36708b78196e3ec5f8e69d4c0846d
BLAKE2b-256 3f0683dd548f221db59cd598149b2a653f7e1783d4a6673d6ad9395e4ee86832

See more details on using hashes here.

File details

Details for the file resampler-0.8.7-py3-none-any.whl.

File metadata

  • Download URL: resampler-0.8.7-py3-none-any.whl
  • Upload date:
  • Size: 45.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for resampler-0.8.7-py3-none-any.whl
Algorithm Hash digest
SHA256 773cc4a0964e64211665916dac5027b7ea8c5f077ca5d792ba568f7a93270252
MD5 dc261deb4f1c94c3e1d2ae406f443dfd
BLAKE2b-256 cf3a382a31728a748afbdee3f5bdbfc63801fd3fe3105d58add10c0b3a91ad8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page