Skip to main content

Fast differentiable resizing and warping of arbitrary grids

Project description

Hugues Hoppe    Aug 2022.

[Open in Colab]   [Kaggle]   [MyBinder]   [DeepNote]   [GitHub source]   [API docs]   [PyPI package]

The notebook resampler_notebook.ipynb hosts the source code for the resampler library, interleaved with docs, usage examples, unit tests, and experiments.

Overview

The resampler library enables fast differentiable resizing and warping of arbitrary grids. It supports:

  • grids of any dimension (e.g., 1D, 2D images, 3D video, 4D batches of videos), containing

  • samples of any shape (e.g., scalars, colors, motion vectors, Jacobian matrices) and

  • any numeric type (integer, floating, and complex);

  • either 'dual' ("half-integer") or 'primal' grid-type for each dimension;

  • many boundary rules, specified per dimension, extensible via subclassing;

  • an extensible set of filter kernels, selectable per dimension;

  • optional gamma transfer functions for correct linear-space filtering;

  • prefiltering for accurate antialiasing when resize downsampling;

  • processing within several array libraries (numpy, tensorflow, torch, and jax);

  • efficient backpropagation of gradients for tensorflow, torch, and jax;

  • few dependencies (only scipy) and no native code, yet

  • faster resizing than C++ implementations in tf.image, torch.nn, and torchvision.

A key strategy is to leverage existing sparse matrix representations and operations.

Example usage

!pip install -q mediapy resampler
import mediapy as media
import numpy as np
import resampler
array = np.random.default_rng(1).random((4, 6, 3))  # 4x6 RGB image.
upsampled = resampler.resize(array, (128, 192))  # To 128x192 resolution.
media.show_images({'4x6': array, '128x192': upsampled}, height=128)
image = media.read_image('https://github.com/hhoppe/data/raw/main/image.png')
downsampled = resampler.resize(image, (32, 32))
media.show_images({'128x128': image, '32x32': downsampled}, height=128)
import matplotlib.pyplot as plt
array = [3.0, 5.0, 8.0, 7.0]  # 4 source samples in 1D.
new_dual = resampler.resize(array, (32,))  # (default gridtype='dual') 8x resolution.
new_primal = resampler.resize(array, (25,), gridtype='primal')  # 8x resolution.
_, axs = plt.subplots(1, 2, figsize=(7, 1.5))
axs[0].set_title('gridtype dual')
axs[0].plot((np.arange(len(array)) + 0.5) / len(array), array, 'o')
axs[0].plot((np.arange(len(new_dual)) + 0.5) / len(new_dual), new_dual, '.')
axs[1].set_title('gridtype primal')
axs[1].plot(np.arange(len(array)) / (len(array) - 1), array, 'o')
axs[1].plot(np.arange(len(new_primal)) / (len(new_primal) - 1), new_primal, '.')
plt.show()
batch_size = 4
batch_of_images = media.moving_circle((16, 16), batch_size)
upsampled = resampler.resize(batch_of_images, (batch_size, 64, 64))
media.show_videos({'original': batch_of_images, 'upsampled': upsampled}, fps=1)

original

upsampled

Most examples above use the default resize() settings:

  • gridtype='dual' for both source and destination arrays,
  • boundary='auto' which uses 'reflect' for upsampling and 'clamp' for downsampling,
  • filter='lanczos3' (a Lanczos kernel with radius 3),
  • gamma=None which by default uses the 'power2' transfer function for the uint8 image in the second example,
  • scale=1.0, translate=0.0 (no domain transformation),
  • default precision and output dtype.

Advanced usage:

Map an image to a wider grid using custom scale and translate vectors, with horizontal 'reflect' and vertical 'natural' boundary rules, providing a constant value for the exterior, using different filters (Lanczos and O-MOMS) in the two dimensions, disabling gamma correction, performing computations in double-precision, and returning an output array in single-precision:

new = resampler.resize(
    image, (128, 512), boundary=('natural', 'reflect'), cval=(0.2, 0.7, 0.3),
    filter=('lanczos3', 'omoms5'), gamma='identity', scale=(0.8, 0.25),
    translate=(0.1, 0.35), precision='float64', dtype='float32')
media.show_images({'image': image, 'new': new})

Warp an image by transforming it using polar coordinates:

shape = image.shape[:2]
yx = ((np.indices(shape).T + 0.5) / shape - 0.5).T  # [-0.5, 0.5]^2
radius, angle = np.linalg.norm(yx, axis=0), np.arctan2(*yx)
angle += (0.8 - radius).clip(0, 1) * 2.0 - 0.6
coords = np.dstack((np.sin(angle) * radius, np.cos(angle) * radius)) + 0.5
resampled = resampler.resample(image, coords, boundary='constant')
media.show_images({'image': image, 'resampled': resampled})

Limitations:

  • Filters are assumed to be separable.
  • Although resize implements prefiltering, resample does not yet have it (and therefore may have aliased results if downsampling).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resampler-0.3.6.tar.gz (40.8 kB view details)

Uploaded Source

Built Distribution

resampler-0.3.6-py3-none-any.whl (38.4 kB view details)

Uploaded Python 3

File details

Details for the file resampler-0.3.6.tar.gz.

File metadata

  • Download URL: resampler-0.3.6.tar.gz
  • Upload date:
  • Size: 40.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for resampler-0.3.6.tar.gz
Algorithm Hash digest
SHA256 9073f1c51bd61ccdad39a615abd96dfc8b3d982fd5ca3d1d9f6f9f7df2999240
MD5 7392a7cc50515faac055e0497a1fa9cb
BLAKE2b-256 e0d8144df3f699722e00783832ef8d8c5f7e6e39baff2619acc1fcff23f83ee5

See more details on using hashes here.

File details

Details for the file resampler-0.3.6-py3-none-any.whl.

File metadata

  • Download URL: resampler-0.3.6-py3-none-any.whl
  • Upload date:
  • Size: 38.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for resampler-0.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 26aa0be41c953bf58da972bc1c138a9616b34288997c57a2702437d0b8dd017d
MD5 49e43b39aad7037fc71ba31e1f3c45de
BLAKE2b-256 0c1d1ad58edacfaedbc1198c281460f83a79126d5f41aa6b4caf39ec7546fd42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page