Skip to main content

Fast differentiable resizing and warping of arbitrary grids

Project description

Hugues Hoppe    Aug 2022.

[Open in Colab]   [Kaggle]   [MyBinder]   [DeepNote]   [GitHub source]   [API docs]   [PyPI package]

The notebook resampler_notebook.ipynb demonstrates the resampler library and contains documentation, usage examples, unit tests, and experiments.

Overview

The resampler library enables fast differentiable resizing and warping of arbitrary grids. It supports:

  • grids of any dimension (e.g., 1D, 2D images, 3D video, 4D batches of videos), containing

  • samples of any shape (e.g., scalars, colors, motion vectors, Jacobian matrices) and

  • any numeric type (e.g., uint8, float64, complex128)

  • within several array libraries] (numpy, tensorflow, torch, and jax);

  • either 'dual' ("half-integer") or 'primal' grid-type for each dimension;

  • many boundary rules, specified per dimension, extensible via subclassing;

  • an extensible set of filter kernels, selectable per dimension;

  • optional gamma transfer functions for correct linear-space filtering;

  • prefiltering for accurate antialiasing when resize downsampling;

  • efficient backpropagation of gradients for tensorflow, torch, and jax;

  • few dependencies (only scipy) and no native code, yet

  • faster resizing than C++ implementations in tf.image and torch.nn.

A key strategy is to leverage existing sparse matrix representations and operations.

Example usage

!pip install -q mediapy resampler
import mediapy as media
import numpy as np
import resampler
array = np.random.default_rng(1).random((4, 6, 3))  # 4x6 RGB image.
upsampled = resampler.resize(array, (128, 192))  # To 128x192 resolution.
media.show_images({'4x6': array, '128x192': upsampled}, height=128)
image = media.read_image('https://github.com/hhoppe/data/raw/main/image.png')
downsampled = resampler.resize(image, (32, 32))
media.show_images({'128x128': image, '32x32': downsampled}, height=128)
import matplotlib.pyplot as plt
array = [3.0, 5.0, 8.0, 7.0]  # 4 source samples in 1D.
new_dual = resampler.resize(array, (32,))  # (default gridtype='dual') 8x resolution.
new_primal = resampler.resize(array, (25,), gridtype='primal')  # 8x resolution.
_, axs = plt.subplots(1, 2, figsize=(7, 1.5))
axs[0].set_title("gridtype='dual'")
axs[0].plot((np.arange(len(array)) + 0.5) / len(array), array, 'o')
axs[0].plot((np.arange(len(new_dual)) + 0.5) / len(new_dual), new_dual, '.')
axs[1].set_title("gridtype='primal'")
axs[1].plot(np.arange(len(array)) / (len(array) - 1), array, 'o')
axs[1].plot(np.arange(len(new_primal)) / (len(new_primal) - 1), new_primal, '.')
plt.show()
batch_size = 4
batch_of_images = media.moving_circle((16, 16), batch_size)
upsampled = resampler.resize(batch_of_images, (batch_size, 64, 64))
media.show_videos({'original': batch_of_images, 'upsampled': upsampled}, fps=1)

original

upsampled

Most examples above use the default resize() settings:

  • gridtype='dual' for both source and destination arrays,
  • boundary='auto' which uses 'reflect' for upsampling and 'clamp' for downsampling,
  • filter='lanczos3' (a Lanczos kernel with radius 3),
  • gamma=None which by default uses the 'power2' transfer function for the uint8 image in the second example,
  • scale=1.0, translate=0.0 (no domain transformation),
  • default precision and output dtype.

Advanced usage:

Map an image to a wider grid using custom scale and translate vectors, with horizontal 'reflect' and vertical 'natural' boundary rules, providing a constant value for the exterior, using different filters (Lanczos and O-MOMS) in the two dimensions, disabling gamma correction, performing computations in double-precision, and returning an output array in single-precision:

new = resampler.resize(
    image, (128, 512), boundary=('natural', 'reflect'), cval=(0.2, 0.7, 0.3),
    filter=('lanczos3', 'omoms5'), gamma='identity', scale=(0.8, 0.25),
    translate=(0.1, 0.35), precision='float64', dtype='float32')
media.show_images({'image': image, 'new': new})

Warp an image by transforming it using polar coordinates:

shape = image.shape[:2]
yx = ((np.indices(shape).T + 0.5) / shape - 0.5).T  # [-0.5, 0.5]^2
radius, angle = np.linalg.norm(yx, axis=0), np.arctan2(*yx)
angle += (0.8 - radius).clip(0, 1) * 2.0 - 0.6
coords = np.dstack((np.sin(angle) * radius, np.cos(angle) * radius)) + 0.5
resampled = resampler.resample(image, coords, boundary='constant')
media.show_images({'image': image, 'resampled': resampled})

Limitations:

  • Filters are assumed to be separable.
  • Although resize implements prefiltering, resample does not yet have it (and therefore may have aliased results if downsampling).
  • Differentiability is only with respect to the grid values, not wrt the resize shape, scale, translation, or the resampling coordinates.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resampler-0.5.7.tar.gz (41.9 kB view details)

Uploaded Source

Built Distribution

resampler-0.5.7-py3-none-any.whl (38.9 kB view details)

Uploaded Python 3

File details

Details for the file resampler-0.5.7.tar.gz.

File metadata

  • Download URL: resampler-0.5.7.tar.gz
  • Upload date:
  • Size: 41.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for resampler-0.5.7.tar.gz
Algorithm Hash digest
SHA256 c89b94098c00106934cef69d272a5e803f78f27bedd24a97727b07070db77829
MD5 3d7055308818bb0c44b404f9064057ce
BLAKE2b-256 401529c5917b72148a7b70676c63bd1c591085d3c1b170f1538b9d0ef0b91db0

See more details on using hashes here.

File details

Details for the file resampler-0.5.7-py3-none-any.whl.

File metadata

  • Download URL: resampler-0.5.7-py3-none-any.whl
  • Upload date:
  • Size: 38.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for resampler-0.5.7-py3-none-any.whl
Algorithm Hash digest
SHA256 5f0194380376144e7f7398d013e1e262e0b3669081d1894dd1a29589f1a08abc
MD5 5e2ff112252faba52ee29e2e9d123d14
BLAKE2b-256 2df25f422a1a61fcd07a6ca1f561bb0bc77c7d2b5c8803840fee5d0f182191f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page