Skip to main content

Fast differentiable resizing and warping of arbitrary grids

Project description

Hugues Hoppe    Aug 2022.

[Open in Colab]   [Kaggle]   [MyBinder]   [DeepNote]   [GitHub source]   [API docs]   [PyPI package]

The notebook resampler_notebook.ipynb demonstrates the resampler library and contains documentation, usage examples, unit tests, and experiments.

Overview

The resampler library enables fast differentiable resizing and warping of arbitrary grids. It supports:

  • grids of any dimension (e.g., 1D, 2D images, 3D video, 4D batches of videos), containing

  • samples of any shape (e.g., scalars, colors, motion vectors, Jacobian matrices) and

  • any numeric type (e.g., uint8, float64, complex128)

  • within several array libraries (numpy, tensorflow, torch, and jax);

  • either 'dual' ("half-integer") or 'primal' grid-type for each dimension;

  • many boundary rules, specified per dimension, extensible via subclassing;

  • an extensible set of filter kernels, selectable per dimension;

  • optional gamma transfer functions for correct linear-space filtering;

  • prefiltering for accurate antialiasing when resize downsampling;

  • efficient backpropagation of gradients for tensorflow, torch, and jax;

  • few dependencies (only numpy and scipy) and no C extension code, yet

  • faster resizing than C++ implementations in tf.image and torch.nn.

A key strategy is to leverage existing sparse matrix representations and operations.

Example usage

!pip install -q mediapy numpy resampler

import mediapy as media
import numpy as np
import resampler
array = np.random.default_rng(1).random((4, 6, 3))  # 4x6 RGB image.
upsampled = resampler.resize(array, (128, 192))  # To 128x192 resolution.
media.show_images({'4x6': array, '128x192': upsampled}, height=128)
image = media.read_image('https://github.com/hhoppe/data/raw/main/image.png')
downsampled = resampler.resize(image, (32, 32))
media.show_images({'128x128': image, '32x32': downsampled}, height=128)
import matplotlib.pyplot as plt
array = [3.0, 5.0, 8.0, 7.0]  # 4 source samples in 1D.
new_dual = resampler.resize(array, (32,))  # (default gridtype='dual') 8x resolution.
new_primal = resampler.resize(array, (25,), gridtype='primal')  # 8x resolution.

_, axs = plt.subplots(1, 2, figsize=(7, 1.5))
axs[0].set_title("gridtype='dual'")
axs[0].plot((np.arange(len(array)) + 0.5) / len(array), array, 'o')
axs[0].plot((np.arange(len(new_dual)) + 0.5) / len(new_dual), new_dual, '.')
axs[1].set_title("gridtype='primal'")
axs[1].plot(np.arange(len(array)) / (len(array) - 1), array, 'o')
axs[1].plot(np.arange(len(new_primal)) / (len(new_primal) - 1), new_primal, '.')
plt.show()
batch_size = 4
batch_of_images = media.moving_circle((16, 16), batch_size)
upsampled = resampler.resize(batch_of_images, (batch_size, 64, 64))
media.show_videos({'original': batch_of_images, 'upsampled': upsampled}, fps=1)

original

upsampled

Most examples above use the default resize() settings:

  • gridtype='dual' for both source and destination arrays,
  • boundary='auto' which uses 'reflect' for upsampling and 'clamp' for downsampling,
  • filter='lanczos3' (a Lanczos kernel with radius 3),
  • gamma=None which by default uses the 'power2' transfer function for the uint8 image in the second example,
  • scale=1.0, translate=0.0 (no domain transformation),
  • default precision and output dtype.

Advanced usage:

Map an image to a wider grid using custom scale and translate vectors, with horizontal 'reflect' and vertical 'natural' boundary rules, providing a constant value for the exterior, using different filters (Lanczos and O-MOMS) in the two dimensions, disabling gamma correction, performing computations in double-precision, and returning an output array in single-precision:

new = resampler.resize(
    image, (128, 512), boundary=('natural', 'reflect'), cval=(0.2, 0.7, 0.3),
    filter=('lanczos3', 'omoms5'), gamma='identity', scale=(0.8, 0.25),
    translate=(0.1, 0.35), precision='float64', dtype='float32')
media.show_images({'image': image, 'new': new})

Warp an image by transforming it using polar coordinates:

shape = image.shape[:2]
yx = ((np.indices(shape).T + 0.5) / shape - 0.5).T  # [-0.5, 0.5]^2
radius, angle = np.linalg.norm(yx, axis=0), np.arctan2(*yx)
angle += (0.8 - radius).clip(0, 1) * 2.0 - 0.6
coords = np.dstack((np.sin(angle) * radius, np.cos(angle) * radius)) + 0.5
resampled = resampler.resample(image, coords, boundary='constant')
media.show_images({'image': image, 'resampled': resampled})

Limitations:

  • Filters are assumed to be separable.
  • Although resize implements prefiltering, resample does not yet have it (and therefore may have aliased results if downsampling).
  • Differentiability is only with respect to the grid values, not wrt the resize shape, scale, translation, or the resampling coordinates.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resampler-0.8.1.tar.gz (46.8 kB view details)

Uploaded Source

Built Distribution

resampler-0.8.1-py3-none-any.whl (44.6 kB view details)

Uploaded Python 3

File details

Details for the file resampler-0.8.1.tar.gz.

File metadata

  • Download URL: resampler-0.8.1.tar.gz
  • Upload date:
  • Size: 46.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for resampler-0.8.1.tar.gz
Algorithm Hash digest
SHA256 641b1651a3636b461fb7670c238abcd6da95e7f8e7e781142dbb18c701a4b737
MD5 eaaf35ff8c8e3651753073e51cc2f808
BLAKE2b-256 321045fae28a63653f7a912035ab2733ac2e049abfeeb52544ac084ec459e4b8

See more details on using hashes here.

File details

Details for the file resampler-0.8.1-py3-none-any.whl.

File metadata

  • Download URL: resampler-0.8.1-py3-none-any.whl
  • Upload date:
  • Size: 44.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for resampler-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b7fa81e92494b2b9c7651ef79adec53dee52a3b6a096d02d1300c09e0d5ea035
MD5 b8c8540692295c405ba95234466b7d69
BLAKE2b-256 8f115507641be77a1dee3bcb6514998de43ca69b1e44548e7b4666bf35358f7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page