Skip to main content

A reservoir computer and chaotic systems package

Project description

Reservoir Computers and Chaotic Systems

This package contains an ode based reservoir computer for learning time series data. The package also includes functions for generating and plotting time series data for three chaotic systems. It additionally contains a module that implements hyperparameter optimization for reservoir computers via the sherpa package.

Installation

The package is hosted on PyPi and can be installed with pip:

pip install rescomp

Alternatively, users can download the repository and add the location of the repo to their Python path.

Import the package with import rescomp as rc.

Chaotic Systems

Currently, we support code to generate time series on three chaotic attractors. Time series can be generated with the orbit function and plotted in 3D with plot3d or in 2D with plot2d. (Plots are displayed in a random color so call the plot function again or supply color(s) to the keyword argument if it looks bad.)

  1. Thomas' cyclically symmetric attractor
t, U = rc.orbit("thomas", duration=1000, dt=0.1)
fig = rc.plot3d(U)

Thomas' cyclically symmetric attractor

  1. The Rossler attractor
t, U = rc.orbit("rossler", duration=100, dt=0.01)
fig = rc.plot3d(U)

Rossler attractor

  1. The Lorenz attractor
t, U = rc.orbit("lorenz", duration=100, dt=0.01)
fig = rc.plot3d(U)

Lorenz attractor

Reservoir Computer Class

The package contains two options for reservoir computers: ResComp and DrivenResComp. The driven reservoir computers are still in beta stage but can be used for designing control algorithms [1]. Here is an example of learning and predicting Thomas' cyclically symetric attractor:

Train and Test

The train_test_orbit function returns training and testing sequences on the attractor. The test sequence immidiately follows the training sequence.

tr, Utr, ts, Uts = rc.train_test_orbit("thomas", duration=1000, dt=0.1)

Initialize the default reservoir computer and train on the test data with:

rcomp_default = rc.ResComp()
rcomp_default.train(tr, Utr)

Take the final state of the reservoir nodes and allow it to continue to evolve to predict what happens next.

r0 = rcomp_default.r0
pre = rcomp_default.predict(ts, r0=r0)
fig = rc.plot3d(pre)

Prediction with default parameters. (Not so good)

This doesn't look much like Thomas' attractor, suggesting that these parameters are not optimal.

Reservoir Hyperparameters

Optimized hyper parameters for each system are included in the package. Initialize a reservoir with optimized hyper parameters as follows:

hyper_parameters = rc.SYSTEMS["thomas"]["rcomp_params"]
rcomp = rc.ResComp(**hyper_parameters)

Train and predict as before.

rcomp.train(tr, Utr)
r0 = rcomp.r0
pre = rcomp.predict(ts, r0=r0)
fig = rc.plot3d(pre)

Prediction with optimized parameters. (Good!)

This prediction looks much more like Thomas' attractor.

Hyperparameter Optimization

The rescomp.optimizer package contains a class, ResCompOptimizer, that allows for easily performing hyperparameter optimization on a ResComp or DrivenResComp object:

from rescomp.optimizer import ResCompOptimizer

rcopt = ResCompOptimizer('thomas', 'relax', 'random', 'augmented')
rcopt.run_optimization(50, 20)
optimized_hyperparams = rcopt.get_best_result()

Also of note are the methods generate_orbits() and run_tests(). generate_orbits() will generate a given number of orbits from the system as well as the reservoir computer's prediction, which is useful for visual comparisons. run_tests() will test the reservoir computer on continued and random predictions with the given hyperparameters, as well as calculate the derivative fit of its predictions and estimate the Lyapunov exponent of the reservoir dynamical system.

There are four built-in systems: the Lorenz, Thomas, and Rossler chaotic attractors, as described above; and a set of data from a soft robot dynamical system. Other systems can be created by extending the rescomp.optimizer.System class, and can be passed to the optimizer instead of the system string.

There is also a script module, rescomp.opt_then_test, that will run hyperparameter optimization on a ResComp on a given system, run various tests on the optimized hyperparameters, and save the results. The script can be run as follows:

python3 -m rescomp.opt_then_test [args]

For details on what parameters it accepts, run it as:

python3 -m rescomp.opt_then_test -h

References

[1] Griffith, A., Pomerance, A., Gauthier, D.. Forecasting Chaotic Systems with Very Low Connectivity Reservoir Computers (2019)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rescomp-0.2.1.tar.gz (47.4 MB view details)

Uploaded Source

Built Distribution

rescomp-0.2.1-py2-none-any.whl (47.1 MB view details)

Uploaded Python 2

File details

Details for the file rescomp-0.2.1.tar.gz.

File metadata

  • Download URL: rescomp-0.2.1.tar.gz
  • Upload date:
  • Size: 47.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.5

File hashes

Hashes for rescomp-0.2.1.tar.gz
Algorithm Hash digest
SHA256 7d7c8a216675d1832208bb3e72f6e0532be8b7578fb3c0a923287301d63b1639
MD5 bd9b24f13d3f54df357d076f9122e0b6
BLAKE2b-256 c0b95f75695a564da6b93274b81a34e435224196dc534dc7b32f9d2f04f5184b

See more details on using hashes here.

File details

Details for the file rescomp-0.2.1-py2-none-any.whl.

File metadata

  • Download URL: rescomp-0.2.1-py2-none-any.whl
  • Upload date:
  • Size: 47.1 MB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.5

File hashes

Hashes for rescomp-0.2.1-py2-none-any.whl
Algorithm Hash digest
SHA256 b7ad1d3883ff9c2c5b1973ebed1da1099eae31c086654100d5b162dc7e98cc33
MD5 b88368abe598cfe3f5f83d18a1b4dbab
BLAKE2b-256 077ecb66de760acd4301a9eba33aade87d7ecdc13486f39679ca7c98c9804c88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page