Skip to main content

ResNeSt

Project description

ResNeSt

Split-Attention Network, A New ResNet Variant. It significantly boosts the performance of downstream models such as Mask R-CNN, Cascade R-CNN and DeepLabV3.

Table of Contents

  1. Pretrained Models
  2. Transfer Learning Models
  3. Verify Models
  4. How to Train
  5. Reference

Pypi / GitHub Install

  1. Install this package repo, note that you only need to choose one of the options
# using github url
pip install git+https://github.com/zhanghang1989/ResNeSt

# using pypi
pip install resnest --pre

Pretrained Models

crop size PyTorch Gluon
ResNeSt-50 224 81.03 81.14
ResNeSt-101 256 82.83 82.81
ResNeSt-200 320 83.84 83.88
ResNeSt-269 416 84.54 84.53

PyTorch Models

  • Load using Torch Hub
import torch
# get list of models
torch.hub.list('zhanghang1989/ResNeSt', force_reload=False)

# load pretrained models, using ResNeSt-50 as an example
net = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True)
  • Load using python package
# using ResNeSt-50 as an example
from resnest.torch import resnest50
net = resnest50(pretrained=True)

Gluon Models

  • Load pretrained model:
# using ResNeSt-50 as an example
from resnest.gluon import resnest50
net = resnest50(pretrained=True)

Transfer Learning Models

Detectron Models

Training code and pretrained models are coming soon.

  • Object Detection
Method Backbone mAP%
Faster R-CNN ResNet-50 38.5
ResNet-101 41.2
ResNeSt-50 (ours) 41.4
ResNeSt-101 (ours) 43.8
Cascade R-CNN ResNet-50 42.52
ResNet-101 44.03
ResNeSt-50 (ours) 45.41
ResNeSt-101 (ours) 47.5
  • Instance Segmentation
Method Backbone bbox mask
Mask R-CNN ResNet-50 39.97 36.05
ResNet-101 41.78 37.51
ResNeSt-50 (ours) 42.81 38.14
ResNeSt-101 (ours) 45.75 40.65
Cascade R-CNN ResNet-50 43.06 37.19
ResNet-101 44.79 38.52
ResNeSt-50 (ours) 46.19 39.55
ResNeSt-101 (ours) 48.30 41.56

Semantic Segmentation

Training code and pretrained models are coming soon.

  • Results on ADE20K
Method Backbone pixAcc% mIoU%
Deeplab-V3
ResNet-50 80.39 42.1
ResNet-101 81.11 44.14
ResNeSt-50 81.17 45.12
ResNeSt-101 82.07 46.91

Verify Models:

Note: the inference speed reported in the paper are tested using Gluon implementation with RecordIO data.

Prepare ImageNet dataset:

Here we use raw image data format for simplicity, please follow GluonCV tutorial if you would like to use RecordIO format.

cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Torch Model

# use resnest50 as the example
cd scripts/torch/
python verify.py --model resnest50 --crop-size 224

Gluon Model

# use resnest50 as the example
cd scripts/gluon/
python verify.py --model resnest50 --crop-size 224

How to Train

Coming Soon.

Reference

ResNeSt: Split-Attention Networks [arXiv]

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint},
year={2020}
}

Major Contributors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resnest-0.0.2b4042020.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

resnest-0.0.2b4042020-py3-none-any.whl (23.2 kB view details)

Uploaded Python 3

File details

Details for the file resnest-0.0.2b4042020.tar.gz.

File metadata

  • Download URL: resnest-0.0.2b4042020.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for resnest-0.0.2b4042020.tar.gz
Algorithm Hash digest
SHA256 1afddc3d1da768039d2e06a6e839b851f6e5a3cb8a0bbb764aeaa4bccb3e90c5
MD5 f377a418f84dd44694ca5622f4a2e30c
BLAKE2b-256 c394cba514ca9298b116c5dae872cd998bd946a4508a3d4ea647908ceab6af46

See more details on using hashes here.

File details

Details for the file resnest-0.0.2b4042020-py3-none-any.whl.

File metadata

  • Download URL: resnest-0.0.2b4042020-py3-none-any.whl
  • Upload date:
  • Size: 23.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for resnest-0.0.2b4042020-py3-none-any.whl
Algorithm Hash digest
SHA256 4d078021b7dc9ad4fff22f10d5677319d63707775cd1c93f8fdab425593012f1
MD5 b762354095b9f58ca619e37540e46bfc
BLAKE2b-256 f2a56eb6d95a0fbab99836c18231903619adede1345103df31965d432cdc0151

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page