Skip to main content

ResNeSt

Project description

PyPI PyPI Pre-release PyPI Nightly Downloads License Unit Test arXiv

PWC PWC PWC PWC PWC PWC

ResNeSt

Split-Attention Network, A New ResNet Variant. It significantly boosts the performance of downstream models such as Mask R-CNN, Cascade R-CNN and DeepLabV3.

Table of Contents

  1. Pretrained Models
  2. Transfer Learning Models
  3. Verify Backbone Models
  4. How to Train
  5. Reference

Pypi / GitHub Install

  1. Install this package repo, note that you only need to choose one of the options
# using github url
pip install git+https://github.com/zhanghang1989/ResNeSt

# using pypi
pip install resnest --pre

Pretrained Models

crop size PyTorch Gluon
ResNeSt-50 224 81.03 81.04
ResNeSt-101 256 82.83 82.81
ResNeSt-200 320 83.84 83.88
ResNeSt-269 416 84.54 84.53
  • 3rd party implementations are available: Tensorflow, Caffe.

  • Extra ablation study models are available in link

PyTorch Models

  • Load using Torch Hub
import torch
# get list of models
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)

# load pretrained models, using ResNeSt-50 as an example
net = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True)
  • Load using python package
# using ResNeSt-50 as an example
from resnest.torch import resnest50
net = resnest50(pretrained=True)

Gluon Models

  • Load pretrained model:
# using ResNeSt-50 as an example
from resnest.gluon import resnest50
net = resnest50(pretrained=True)

Transfer Learning Models

Detectron Models

Training code and pretrained models are released at our Detectron2 Fork.

Object Detection on MS-COCO validation set

Method Backbone mAP%
Faster R-CNN ResNet-50 39.25
ResNet-101 41.37
ResNeSt-50 (ours) 42.33
ResNeSt-101 (ours) 44.72
Cascade R-CNN ResNet-50 42.52
ResNet-101 44.03
ResNeSt-50 (ours) 45.41
ResNeSt-101 (ours) 47.50
ResNeSt-200 (ours) 49.03

Instance Segmentation

Method Backbone bbox mask
Mask R-CNN ResNet-50 39.97 36.05
ResNet-101 41.78 37.51
ResNeSt-50 (ours) 42.81 38.14
ResNeSt-101 (ours) 45.75 40.65
Cascade R-CNN ResNet-50 43.06 37.19
ResNet-101 44.79 38.52
ResNeSt-50 (ours) 46.19 39.55
ResNeSt-101 (ours) 48.30 41.56
ResNeSt-200 (w/ tricks ours) 50.54 44.21
ResNeSt-200-dcn (w/ tricks ours) 50.91 44.50
53.30* 47.10*

All of results are reported on COCO-2017 validation dataset. The values with * demonstrate the mutli-scale testing performance on the test-dev2019.

Panoptic Segmentation

Backbone bbox mask PQ
ResNeSt-200 51.00 43.68 47.90

Semantic Segmentation

Results on ADE20K

Method Backbone pixAcc% mIoU%
Deeplab-V3
ResNet-50 80.39 42.1
ResNet-101 81.11 44.14
ResNeSt-50 (ours) 81.17 45.12
ResNeSt-101 (ours) 82.07 46.91
ResNeSt-200 (ours) 82.45 48.36
ResNeSt-269 (ours) 82.62 47.60

Results on Cityscapes

Method Backbone Split w Mapillary mIoU%
Deeplab-V3+
ResNeSt-200 (ours) Validation no 82.7
ResNeSt-200 (ours) Validation yes 83.8
ResNeSt-200 (ours) Test yes 83.3

Verify Backbone Models:

Note: the inference speed reported in the paper are tested using Gluon implementation with RecordIO data.

Prepare ImageNet dataset:

Here we use raw image data format for simplicity, please follow GluonCV tutorial if you would like to use RecordIO format.

cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Torch Model

# use resnest50 as an example
cd scripts/torch/
python verify.py --model resnest50 --crop-size 224

Gluon Model

# use resnest50 as an example
cd scripts/gluon/
python verify.py --model resnest50 --crop-size 224

How to Train

ImageNet Models

Detectron Models

For object detection and instance segmentation models, please visit our detectron2-ResNeSt fork.

Semantic Segmentation

Reference

ResNeSt: Split-Attention Networks [arXiv]

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}

Major Contributors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resnest-0.0.6b20201006.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

resnest-0.0.6b20201006-py3-none-any.whl (31.1 kB view details)

Uploaded Python 3

File details

Details for the file resnest-0.0.6b20201006.tar.gz.

File metadata

  • Download URL: resnest-0.0.6b20201006.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.9

File hashes

Hashes for resnest-0.0.6b20201006.tar.gz
Algorithm Hash digest
SHA256 c4ce78219d46900f28860d982cdbc1af9aeac47a9e133120df44bb9f99e3e263
MD5 e2a061941059f5b27f9e9edab017fcdf
BLAKE2b-256 8ac294d7f1dac7fcf36b60ebd1c1d83bd0bd4883152e9fabecca4a43d748d296

See more details on using hashes here.

File details

Details for the file resnest-0.0.6b20201006-py3-none-any.whl.

File metadata

  • Download URL: resnest-0.0.6b20201006-py3-none-any.whl
  • Upload date:
  • Size: 31.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.9

File hashes

Hashes for resnest-0.0.6b20201006-py3-none-any.whl
Algorithm Hash digest
SHA256 1c8be63adc34fdf38c36073efe0b9522148fff4cba261d43496b05a9f3205aa0
MD5 7f79e357f68063cf81d888696b3d6ae0
BLAKE2b-256 fa93b907f386527c27586482c96d63e9b64dd24c42268252726468edf9384ef9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page