Skip to main content

ResNeSt

Project description

PyPI PyPI Pre-release PyPI Nightly Downloads License Unit Test arXiv

PWC PWC PWC PWC PWC PWC

ResNeSt

Split-Attention Network, A New ResNet Variant. It significantly boosts the performance of downstream models such as Mask R-CNN, Cascade R-CNN and DeepLabV3.

Table of Contents

  1. Pretrained Models
  2. Transfer Learning Models
  3. Verify Backbone Models
  4. How to Train
  5. Reference

Pypi / GitHub Install

  1. Install this package repo, note that you only need to choose one of the options
# using github url
pip install git+https://github.com/zhanghang1989/ResNeSt

# using pypi
pip install resnest --pre

Pretrained Models

crop size PyTorch Gluon
ResNeSt-50 224 81.03 81.04
ResNeSt-101 256 82.83 82.81
ResNeSt-200 320 83.84 83.88
ResNeSt-269 416 84.54 84.53
  • 3rd party implementations are available: Tensorflow, Caffe.

  • Extra ablation study models are available in link

PyTorch Models

  • Load using Torch Hub
import torch
# get list of models
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)

# load pretrained models, using ResNeSt-50 as an example
net = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True)
  • Load using python package
# using ResNeSt-50 as an example
from resnest.torch import resnest50
net = resnest50(pretrained=True)

Gluon Models

  • Load pretrained model:
# using ResNeSt-50 as an example
from resnest.gluon import resnest50
net = resnest50(pretrained=True)

Transfer Learning Models

Detectron Models

Training code and pretrained models are released at our Detectron2 Fork.

Object Detection on MS-COCO validation set

Method Backbone mAP%
Faster R-CNN ResNet-50 39.25
ResNet-101 41.37
ResNeSt-50 (ours) 42.33
ResNeSt-101 (ours) 44.72
Cascade R-CNN ResNet-50 42.52
ResNet-101 44.03
ResNeSt-50 (ours) 45.41
ResNeSt-101 (ours) 47.50
ResNeSt-200 (ours) 49.03

Instance Segmentation

Method Backbone bbox mask
Mask R-CNN ResNet-50 39.97 36.05
ResNet-101 41.78 37.51
ResNeSt-50 (ours) 42.81 38.14
ResNeSt-101 (ours) 45.75 40.65
Cascade R-CNN ResNet-50 43.06 37.19
ResNet-101 44.79 38.52
ResNeSt-50 (ours) 46.19 39.55
ResNeSt-101 (ours) 48.30 41.56
ResNeSt-200 (w/ tricks ours) 50.54 44.21
ResNeSt-200-dcn (w/ tricks ours) 50.91 44.50
53.30* 47.10*

All of results are reported on COCO-2017 validation dataset. The values with * demonstrate the mutli-scale testing performance on the test-dev2019.

Panoptic Segmentation

Backbone bbox mask PQ
ResNeSt-200 51.00 43.68 47.90

Semantic Segmentation

Results on ADE20K

Method Backbone pixAcc% mIoU%
Deeplab-V3
ResNet-50 80.39 42.1
ResNet-101 81.11 44.14
ResNeSt-50 (ours) 81.17 45.12
ResNeSt-101 (ours) 82.07 46.91
ResNeSt-200 (ours) 82.45 48.36
ResNeSt-269 (ours) 82.62 47.60

Results on Cityscapes

Method Backbone Split w Mapillary mIoU%
Deeplab-V3+
ResNeSt-200 (ours) Validation no 82.7
ResNeSt-200 (ours) Validation yes 83.8
ResNeSt-200 (ours) Test yes 83.3

Verify Backbone Models:

Note: the inference speed reported in the paper are tested using Gluon implementation with RecordIO data.

Prepare ImageNet dataset:

Here we use raw image data format for simplicity, please follow GluonCV tutorial if you would like to use RecordIO format.

cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Torch Model

# use resnest50 as an example
cd scripts/torch/
python verify.py --model resnest50 --crop-size 224

Gluon Model

# use resnest50 as an example
cd scripts/gluon/
python verify.py --model resnest50 --crop-size 224

How to Train

ImageNet Models

Detectron Models

For object detection and instance segmentation models, please visit our detectron2-ResNeSt fork.

Semantic Segmentation

Reference

ResNeSt: Split-Attention Networks [arXiv]

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}

Major Contributors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resnest-0.0.6b20201023.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

resnest-0.0.6b20201023-py3-none-any.whl (31.1 kB view details)

Uploaded Python 3

File details

Details for the file resnest-0.0.6b20201023.tar.gz.

File metadata

  • Download URL: resnest-0.0.6b20201023.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for resnest-0.0.6b20201023.tar.gz
Algorithm Hash digest
SHA256 48e486ace82a13a6021ed0e9aaa3ec515ed8ce298876e5d3322c354faba45d5e
MD5 a6c2be1d1ad8cad5b44f32beeffc14cf
BLAKE2b-256 a678f2d931d7ca208c1a85eee748c7bd8d5dc74025e1997e685f371c0fee09d3

See more details on using hashes here.

File details

Details for the file resnest-0.0.6b20201023-py3-none-any.whl.

File metadata

  • Download URL: resnest-0.0.6b20201023-py3-none-any.whl
  • Upload date:
  • Size: 31.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for resnest-0.0.6b20201023-py3-none-any.whl
Algorithm Hash digest
SHA256 f7459ad4fca8ce56e80e0c7875fec09d59278461cbf5e9d52a4a94a12f7660eb
MD5 6c38cb6ba38c96735be37c64379df82c
BLAKE2b-256 2b9a143a0ff4199978e17a05f13ebd5e05e9c6d5c7a444bab354809ae3ffd450

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page