Skip to main content

ResNeSt

Project description

PyPI PyPI Pre-release PyPI Nightly Downloads License Unit Test arXiv

PWC PWC PWC PWC PWC PWC

ResNeSt

Split-Attention Network, A New ResNet Variant. It significantly boosts the performance of downstream models such as Mask R-CNN, Cascade R-CNN and DeepLabV3.

Table of Contents

  1. Pretrained Models
  2. Transfer Learning Models
  3. Verify Backbone Models
  4. How to Train
  5. Reference

Pypi / GitHub Install

  1. Install this package repo, note that you only need to choose one of the options
# using github url
pip install git+https://github.com/zhanghang1989/ResNeSt

# using pypi
pip install resnest --pre

Pretrained Models

crop size PyTorch Gluon
ResNeSt-50 224 81.03 81.04
ResNeSt-101 256 82.83 82.81
ResNeSt-200 320 83.84 83.88
ResNeSt-269 416 84.54 84.53
  • 3rd party implementations are available: Tensorflow, Caffe.

  • Extra ablation study models are available in link

PyTorch Models

  • Load using Torch Hub
import torch
# get list of models
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)

# load pretrained models, using ResNeSt-50 as an example
net = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True)
  • Load using python package
# using ResNeSt-50 as an example
from resnest.torch import resnest50
net = resnest50(pretrained=True)

Gluon Models

  • Load pretrained model:
# using ResNeSt-50 as an example
from resnest.gluon import resnest50
net = resnest50(pretrained=True)

Transfer Learning Models

MMDetection

The ResNeSt backbone has been adopted by MMDetection.

Detectron Models

Training code and pretrained models are released at our Detectron2 Fork.

Object Detection on MS-COCO validation set

Method Backbone mAP%
Faster R-CNN ResNet-50 39.25
ResNet-101 41.37
ResNeSt-50 (ours) 42.33
ResNeSt-101 (ours) 44.72
Cascade R-CNN ResNet-50 42.52
ResNet-101 44.03
ResNeSt-50 (ours) 45.41
ResNeSt-101 (ours) 47.50
ResNeSt-200 (ours) 49.03

Instance Segmentation

Method Backbone bbox mask
Mask R-CNN ResNet-50 39.97 36.05
ResNet-101 41.78 37.51
ResNeSt-50 (ours) 42.81 38.14
ResNeSt-101 (ours) 45.75 40.65
Cascade R-CNN ResNet-50 43.06 37.19
ResNet-101 44.79 38.52
ResNeSt-50 (ours) 46.19 39.55
ResNeSt-101 (ours) 48.30 41.56
ResNeSt-200 (w/ tricks ours) 50.54 44.21
ResNeSt-200-dcn (w/ tricks ours) 50.91 44.50
53.30* 47.10*

All of results are reported on COCO-2017 validation dataset. The values with * demonstrate the mutli-scale testing performance on the test-dev2019.

Panoptic Segmentation

Backbone bbox mask PQ
ResNeSt-200 51.00 43.68 47.90

Semantic Segmentation

Results on ADE20K

Method Backbone pixAcc% mIoU%
Deeplab-V3
ResNet-50 80.39 42.1
ResNet-101 81.11 44.14
ResNeSt-50 (ours) 81.17 45.12
ResNeSt-101 (ours) 82.07 46.91
ResNeSt-200 (ours) 82.45 48.36
ResNeSt-269 (ours) 82.62 47.60

Results on Cityscapes

Method Backbone Split w Mapillary mIoU%
Deeplab-V3+
ResNeSt-200 (ours) Validation no 82.7
ResNeSt-200 (ours) Validation yes 83.8
ResNeSt-200 (ours) Test yes 83.3

Verify Backbone Models:

Note: the inference speed reported in the paper are tested using Gluon implementation with RecordIO data.

Prepare ImageNet dataset:

Here we use raw image data format for simplicity, please follow GluonCV tutorial if you would like to use RecordIO format.

cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Torch Model

# use resnest50 as an example
cd scripts/torch/
python verify.py --model resnest50 --crop-size 224

Gluon Model

# use resnest50 as an example
cd scripts/gluon/
python verify.py --model resnest50 --crop-size 224

How to Train

ImageNet Models

Detectron Models

For object detection and instance segmentation models, please visit our detectron2-ResNeSt fork.

Semantic Segmentation

Reference

ResNeSt: Split-Attention Networks [arXiv]

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}

Major Contributors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resnest-0.0.6b20201230.tar.gz (24.0 kB view details)

Uploaded Source

Built Distribution

resnest-0.0.6b20201230-py3-none-any.whl (31.1 kB view details)

Uploaded Python 3

File details

Details for the file resnest-0.0.6b20201230.tar.gz.

File metadata

  • Download URL: resnest-0.0.6b20201230.tar.gz
  • Upload date:
  • Size: 24.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.7.9

File hashes

Hashes for resnest-0.0.6b20201230.tar.gz
Algorithm Hash digest
SHA256 e9fa814d584b4abd8b94f1d65820fc7b184b814977b327d8077eaaccef806bf6
MD5 a63cd2a1e1d2697ea7e40083989ed46f
BLAKE2b-256 6fa263dda432caa994394037bcb37ec367e6a87f3641ea2d4314ea187545206d

See more details on using hashes here.

File details

Details for the file resnest-0.0.6b20201230-py3-none-any.whl.

File metadata

  • Download URL: resnest-0.0.6b20201230-py3-none-any.whl
  • Upload date:
  • Size: 31.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.7.9

File hashes

Hashes for resnest-0.0.6b20201230-py3-none-any.whl
Algorithm Hash digest
SHA256 05338fda55f0a63c197e52ae60388801cc75bc8f70090285b8f8981cf278c1cc
MD5 db4387e67372cc6146d679aae2829757
BLAKE2b-256 f662bd76633473dd70256fe12d7f4f67eb6a6d5562f36af55d77277a36b6dba3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page