Skip to main content

ResNeSt

Project description

PyPI PyPI Pre-release PyPI Nightly Downloads License Unit Test arXiv

PWC PWC PWC PWC PWC PWC

ResNeSt

Split-Attention Network, A New ResNet Variant. It significantly boosts the performance of downstream models such as Mask R-CNN, Cascade R-CNN and DeepLabV3.

Table of Contents

  1. Pretrained Models
  2. Transfer Learning Models
  3. Verify ImageNet Results
  4. How to Train
  5. Reference

Pypi / GitHub Install

  1. Install this package repo, note that you only need to choose one of the options
# using github url
pip install git+https://github.com/zhanghang1989/ResNeSt

# using pypi
pip install resnest --pre

Pretrained Models

crop size PyTorch Gluon
ResNeSt-50 224 81.03 81.04
ResNeSt-101 256 82.83 82.81
ResNeSt-200 320 83.84 83.88
ResNeSt-269 416 84.54 84.53
  • 3rd party implementations are available: Tensorflow, Caffe, JAX.

  • Extra ablation study models are available in link

PyTorch Models

  • Load using Torch Hub
import torch
# get list of models
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)

# load pretrained models, using ResNeSt-50 as an example
net = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True)
  • Load using python package
# using ResNeSt-50 as an example
from resnest.torch import resnest50
net = resnest50(pretrained=True)

Gluon Models

  • Load pretrained model:
# using ResNeSt-50 as an example
from resnest.gluon import resnest50
net = resnest50(pretrained=True)

Transfer Learning Models

Detectron2

We provide a wrapper for training Detectron2 models with ResNeSt backbone at d2. Training configs and pretrained models are released. See details in d2.

MMDetection

The ResNeSt backbone has been adopted by MMDetection.

Semantic Segmentation

Verify ImageNet Results:

Note: the inference speed reported in the paper are tested using Gluon implementation with RecordIO data.

Prepare ImageNet dataset:

Here we use raw image data format for simplicity, please follow GluonCV tutorial if you would like to use RecordIO format.

cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Torch Model

# use resnest50 as an example
cd scripts/torch/
python verify.py --model resnest50 --crop-size 224

Gluon Model

# use resnest50 as an example
cd scripts/gluon/
python verify.py --model resnest50 --crop-size 224

How to Train

ImageNet Models

Detectron Models

For object detection and instance segmentation models, please visit our detectron2-ResNeSt fork.

Semantic Segmentation

Reference

ResNeSt: Split-Attention Networks [arXiv]

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}

Major Contributors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

resnest-0.0.6b20220413.tar.gz (36.1 kB view details)

Uploaded Source

Built Distribution

resnest-0.0.6b20220413-py3-none-any.whl (49.0 kB view details)

Uploaded Python 3

File details

Details for the file resnest-0.0.6b20220413.tar.gz.

File metadata

  • Download URL: resnest-0.0.6b20220413.tar.gz
  • Upload date:
  • Size: 36.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.12

File hashes

Hashes for resnest-0.0.6b20220413.tar.gz
Algorithm Hash digest
SHA256 d5e82a3788eea8c5118bf7e9a523783fa06821f79baf9b6848473ad99229a9c8
MD5 b2d6a36589056bbcc522f35e86126eca
BLAKE2b-256 fef7e05ef31a4767da5ff947ea3e2f88f17c302967f9f68668e49626c71e0635

See more details on using hashes here.

File details

Details for the file resnest-0.0.6b20220413-py3-none-any.whl.

File metadata

File hashes

Hashes for resnest-0.0.6b20220413-py3-none-any.whl
Algorithm Hash digest
SHA256 1b6cab67a5c9375c2d13f1ddce6a7d6eaede43d5a25ce610641fa3d63532c89b
MD5 3522b7bc77eb8c31f740c7196c46ceaa
BLAKE2b-256 9c3d612a4a8179b29abc7bf88d92e0a63be7961ccddaf6f4c44d10658c2e117f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page