Skip to main content

Don't get mad, get results

Project description

Don't get mad, get results

Tabular data and SQL for people who don't have time to faff about.

Move between xlsx, xls, csv, python, postgres and back with ease.

Features:

  • Zero-boilerplate database creating, connecting and querying.
  • Loading/tidying/transforming csv and excel data.
  • Autodetect column types, load your data with little or no manual specification.
  • Powerful multi-column, multi-order keyset paging of database results.
  • Schema syncing.

Limitations

  • Python 3.6+, PostgreSQL 10+ only. Many features will work with other databases, but many won't. Just use Postgres!

Installation

results is on PyPI. Install it with pip or any of the (many) Python package managers.

Scenario

Somebody gives you a messy csv or excel file. You need to load it, clean it up, put it into a database, query it, make a pivot table from it, then send the pivot table to somebody as a csv.

results is here to get this sort of thing done quickly and with minimum possible fuss.

Let's see.

First, load and clean:

import results

# load a csv (in this example, some airport data)
sheet = results.from_file("airports.csv")

# do general cleanup
sheet.standardize_spaces()
sheet.set_blanks_to_none()

# give the keys lowercase-with-underscore names to keep the database happy
cleaned = sheet.with_standardized_keys()

Then, create a database:

# create a database
DB = "postgresql:///example"

db = results.db(DB)

# create it if it doesn't exist
db.create_database()

Then create a table for the data, automatically guessing the columns and creating a table to match.

# guess the column types
guessed = cleaned.guessed_sql_column_types()

# create a table for the data
create_table_statement = results.create_table_statement("data", guessed)

# create or auto-update the table structure in the database
# syncing requires a copy of postgres running locally with your current user set up as superuser
db.sync_db_structure_to_definition(create_table_statement, confirm=False)

Then insert the data and freely query it.

# insert the data. you can also do upserts with upsert_on!
db.insert("data", cleaned)

# show recent airfreight numbers from the top 5 airports
# ss means "single statement"
query_result = db.ss(
    """
with top5 as (
    select
        foreignport, sum(freight_in_tonnes)
    from
        data
    where year >= 2010
    group by
        foreignport
    order by 2 desc
    limit 5
)

select
    year, foreignport, sum(freight_in_tonnes)
from
    data
where
    year >= 2010
    and foreignport in (select foreignport from top5)
group by 1, 2
order by 1, 2

"""
)

Create a pivot table, then print it as markdown or save it as csv.

# create a pivot table
pivot = query_result.pivoted()

# print the pivot table in markdown format
print(pivot.md)

Output:

|   year |   Auckland |    Dubai |   Hong Kong |   Kuala Lumpur |   Singapore |
|-------:|-----------:|---------:|------------:|---------------:|------------:|
|   2010 |     288997 | 145527   |      404735 |       226787   |      529407 |
|   2011 |     304628 | 169868   |      428990 |       244053   |      583921 |
|   2012 |     312828 | 259444   |      400596 |       272093   |      614155 |
|   2013 |     306783 | 257263   |      353895 |       272804   |      592886 |
|   2014 |     309318 | 244776   |      330521 |       261438   |      620419 |
|   2015 |     286202 | 263378   |      290292 |       252906   |      633862 |
|   2016 |     285973 | 236419   |      309556 |       175858   |      614172 |
|   2017 |     314405 | 226048   |      340216 |       199868   |      662505 |
|   2018 |     126712 |  91611.2 |      134540 |        74667.5 |      250653 |

Save the table as a csv:

pivot.save_csv("2010s_freight_sources_top5.csv")

Design philosophy

  • Avoid boilerplate at all costs. Make it as simple as possible but no simpler.

  • Don't reinvent the wheel: results uses sqlalchemy for database connections, existing excel parsing libraries for excel parsing, etc etc. results brings it all together, sprinkles some sugar on top, and puts it at your fingertips.

  • Eat your own dogfood: We use this ourselves every day.

Documentation

This README.md is currently all there is :( But we'll add more soon, we promise!

Credits

Contributions

Yes please!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

results-0.1.1574119737.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

results-0.1.1574119737-py3-none-any.whl (18.6 kB view details)

Uploaded Python 3

File details

Details for the file results-0.1.1574119737.tar.gz.

File metadata

  • Download URL: results-0.1.1574119737.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/0.12.17 CPython/3.7.4 Linux/4.15.0-1043-aws

File hashes

Hashes for results-0.1.1574119737.tar.gz
Algorithm Hash digest
SHA256 12a21facbe478748ec765374e42a4d97053164d27ba7269049fa4e3b9dcc3579
MD5 5e81c0778b61da0b784729323858c6cc
BLAKE2b-256 9ae93af1a609281d7d1496f829f14fd54d3de21a597dbaff2c516950763f1d5e

See more details on using hashes here.

File details

Details for the file results-0.1.1574119737-py3-none-any.whl.

File metadata

  • Download URL: results-0.1.1574119737-py3-none-any.whl
  • Upload date:
  • Size: 18.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/0.12.17 CPython/3.7.4 Linux/4.15.0-1043-aws

File hashes

Hashes for results-0.1.1574119737-py3-none-any.whl
Algorithm Hash digest
SHA256 1dde320c180b59499b31fc53e55a19b15291a68c6cddce778c62546b4fa4397e
MD5 918d6ea9d90fbea99f3f4d8af110fcbb
BLAKE2b-256 9c3ae87759fa7ed85ce4c1512b345f4a3a59630b7e1b540b6b7a18672e3f5724

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page