Skip to main content

No project description provided

Project description

RetailTree

RetailTree is a Python library designed for efficient management and querying of spatial data utilizing a tree-based data structure. Specifically, RetailTree employs a VP (Vantage Point) tree for optimized spatial data management.

Key Features

  • Nearest Neighbor Search: RetailTree enables finding the nearest neighbors in 2D space.
  • Tree-Based Structure: Utilizes a VP tree for optimized spatial data management.
  • Top, Right, Left, and Bottom Annotations: Supports retrieval of annotations based on their relative positions.
  • Annotations within Angle Range: Provides functionality to retrieve annotations within a specified angle range relative to a reference point.

Installation

You can install retailTree via pip:

pip install retailtree

Usage

Import necessary modules and functions

# Imports
from retailtree import RetailTree, Annotation
from retailtree.utils.dist_func import manhattan, euclidean
import json

Sample Usage 1: Creating Annotations with Annotation Class using a sample JSON file

# Define the path to the JSON file containing annotations
file_path = './tests/test_data/test_data.json'

# Open and load the JSON file
with open(file_path, 'r') as file:
    annotations = json.load(file)

# Initialize a RetailTree object
rt = RetailTree()

# Iterate over the loaded annotations and create Annotation objects
for ann in annotations:
    # Create an Annotation object with the required properties
    ann_obj = Annotation(id=ann['id'], x_min=ann['x_min'], y_min=ann['y_min'], x_max=ann['x_max'], y_max=ann['y_max'])
    # Add the created Annotation object to the RetailTree
    rt.add_annotation(ann_obj)

OR

Sample Usage 2: Creating Annotations with Annotation Class

# Create annotation object
ann1 = Annotation(id=1, x_min=2, y_min=1, x_max=3, y_max=2)
ann2 = Annotation(id=2, x_min=1, y_min=2, x_max=2, y_max=3)
ann3 = Annotation(id=3, x_min=2, y_min=2, x_max=3, y_max=3)
ann4 = Annotation(id=4, x_min=3, y_min=2, x_max=4, y_max=3)
ann5 = Annotation(id=5, x_min=2, y_min=3, x_max=3, y_max=4)
annotations = [ann1, ann2, ann3, ann4, ann5]

# Create retailtree object
rt = RetailTree()

# Adding annotations to retailtree
for ann in annotations:
  rt.add_annotation(ann)

Building the Tree and Querying

Building the Tree

# Build the retail tree structure using the euclidean distance function
rt.build_tree(dist_func=euclidean)

Querying the Tree

# Retrieve and print annotations within a radius.
print(rt.neighbors(id=3, radius=1))

# Retrieve and print the Top, Bottom, Left, and Right neighboring annotations.
print(rt.TBLR(id=3, radius=1, overlap=0.5))

# Retrieve and print neighboring annotations of the annotation.
print(rt.neighbors_wa(id=3, radius=2, amin=0, amax=180))

# Retrieve and print the coordinates of the annotation.
print(rt.get(id=3).get_coords())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

retailtree-1.3.2.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

retailtree-1.3.2-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file retailtree-1.3.2.tar.gz.

File metadata

  • Download URL: retailtree-1.3.2.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for retailtree-1.3.2.tar.gz
Algorithm Hash digest
SHA256 c1146d78c299c9f7ba13dd56b4bd9d56255cd9937637bbaee41a7655bfefdfe8
MD5 a6ef5159b612b9e6d3fbe013d6e88bda
BLAKE2b-256 8241abcf1ba758bc60833a8e7d1958d5424d412372df4167ed5fba80d96ff7dc

See more details on using hashes here.

File details

Details for the file retailtree-1.3.2-py3-none-any.whl.

File metadata

  • Download URL: retailtree-1.3.2-py3-none-any.whl
  • Upload date:
  • Size: 12.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for retailtree-1.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 90b9759f4bf684d7447f3947bde97176017f67138794136f59bea2ff08659f9b
MD5 df26e219f82527c532b2ec54a0c7a1cb
BLAKE2b-256 379baf41f39a5c4a48289003994d8a1b1a99084f9111fbed5c4957f354014602

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page