Skip to main content

No project description provided

Project description

RetailTree

RetailTree is a Python library designed for efficient management and querying of spatial data utilizing a tree-based data structure. Specifically, RetailTree employs a VP (Vantage Point) tree for optimized spatial data management.

Key Features

  • Nearest Neighbor Search: RetailTree enables finding the nearest neighbors in 2D space.
  • Tree-Based Structure: Utilizes a VP tree for optimized spatial data management.
  • Top, Right, Left, and Bottom Annotations: Supports retrieval of annotations based on their relative positions.
  • Annotations within Angle Range: Provides functionality to retrieve annotations within a specified angle range relative to a reference point.

Installation

You can install retailTree via pip:

pip install retailtree

Usage

Import necessary modules and functions

# Imports
from retailtree import RetailTree, Annotation
from retailtree.utils.dist_func import manhattan, euclidean
import json

Sample Usage 1: Creating Annotations with Annotation Class using a sample JSON file

# Define the path to the JSON file containing annotations
file_path = './tests/test_data/test_data.json'

# Open and load the JSON file
with open(file_path, 'r') as file:
    annotations = json.load(file)

# Initialize a RetailTree object
rt = RetailTree()

# Iterate over the loaded annotations and create Annotation objects
for ann in annotations:
    # Create an Annotation object with the required properties
    ann_obj = Annotation(id=ann['id'], x_min=ann['x_min'], y_min=ann['y_min'], x_max=ann['x_max'], y_max=ann['y_max'])
    # Add the created Annotation object to the RetailTree
    rt.add_annotation(ann_obj)

OR

Sample Usage 2: Creating Annotations with Annotation Class

# Create annotation object
ann1 = Annotation(id=1, x_min=2, y_min=1, x_max=3, y_max=2)
ann2 = Annotation(id=2, x_min=1, y_min=2, x_max=2, y_max=3)
ann3 = Annotation(id=3, x_min=2, y_min=2, x_max=3, y_max=3)
ann4 = Annotation(id=4, x_min=3, y_min=2, x_max=4, y_max=3)
ann5 = Annotation(id=5, x_min=2, y_min=3, x_max=3, y_max=4)
annotations = [ann1, ann2, ann3, ann4, ann5]

# Create retailtree object
rt = RetailTree()

# Adding annotations to retailtree
for ann in annotations:
  rt.add_annotation(ann)

Building the Tree and Querying

Building the Tree

# Build the retail tree structure using the euclidean distance function
rt.build_tree(dist_func=euclidean)

Querying the Tree

# Retrieve and print annotations within a radius.
print(rt.neighbors(id=3, radius=1))

# Retrieve and print the Top, Bottom, Left, and Right neighboring annotations.
print(rt.TBLR(id=3, radius=1, overlap=0.5))

# Retrieve and print neighboring annotations of the annotation.
print(rt.neighbors_wa(id=3, radius=2, amin=0, amax=180))

# Retrieve and print the coordinates of the annotation.
print(rt.get(id=3).get_coords())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

retailtree-1.3.1.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

retailtree-1.3.1-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file retailtree-1.3.1.tar.gz.

File metadata

  • Download URL: retailtree-1.3.1.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for retailtree-1.3.1.tar.gz
Algorithm Hash digest
SHA256 ab1f96d208fa7215b8d78aa803f6fea8a6207a84a09aa30c5ca365d17e0486bb
MD5 9eff010012302af76a20bf52bf7b33aa
BLAKE2b-256 bb5cde5a4a6266390d4878adb689e029793f15f44ea3831f035bea649e6e17b6

See more details on using hashes here.

File details

Details for the file retailtree-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: retailtree-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 12.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for retailtree-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7436d6f6d12f38fa4c12babc51af9a01b960fa5f0f9189ca0ab9629ecd1e5338
MD5 74f2b0e20b061c40a7372a7ac042d2cb
BLAKE2b-256 63fd76d3b2b2a0117de3993ca66d6bb2f4dee10e8820b60f916c6095876034f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page