package for predicting pubnum of X or others
Project description
鎻愪緵涓嶅悓cohort鐣欏瓨鐜囩殑棰勬祴銆佸彂鏂囬娴嬨90澶┿180澶╂祦閲忋佹敹鍏ラ娴嬬瓑
浣跨敤鏂瑰紡濡備笅锛
#鍙戞枃棰勬祴
df = pd.read_csv('D:/椤圭洰/X椤圭洰/X鍙戞枃棰勪及妯″瀷/鐣欏瓨妯″瀷/X寮曞叆鐣欏瓨(鏈).csv', encoding='utf-8')
df['cp'] = df['cp_num'] / df['pr']
total_cp = df.groupby('start_month')['cp'].max()
df = df[(df.start_month <= 202209) & (df.lag_month <= 202209)]
df['lag'] = df['lag_month'].apply(lambda x: int(str(x)[0:4]) * 12 + int(str(x)[4:])) - \
df['start_month'].apply(lambda x: int(str(x)[0:4]) * 12 + int(str(x)[4:]))
df1 = pd.pivot(df, index='lag', columns='start_month', values='pr')
df2 = pd.pivot(df, index='lag', columns='start_month', values='cp_num')
ra = MonthRetention(df)
print(ra.retention_predict_per_month(202210))
la = Pubnum(df)
print(la.avgpub_predict(202210))
total_cp_add = pd.Series(index=[202212,202301,202302,202303,202304,202305,202306,202307,202308,202309,202310,202311,202312])
total_cp = pd.concat([total_cp, total_cp_add], axis=0)
total_cp = total_cp.fillna(method='ffill')
# print(total_cp)
p = MonthPubCalc(df, total_cp)
print('鍙戞枃鏁帮細', p.calc_monthlist_pubnum(202301,202312))
#娴侀噺棰勬祴
data = pd.read_csv('鍙戞枃90澶╁唴娴侀噺.csv', encoding='utf-8')
his = data[data.month1 != 202207]
pre = data[data.month1 == 202207]
cl = IncomePredict(his, pre, month='month1', delta_days='delta_days', vv_income='vv', n=15, m=90)
result = cl.calc_income_vv(method='frdist')
print(result)
print(pre.sum())
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
retention_model-0.0.2.tar.gz
(254.4 kB
view details)
File details
Details for the file retention_model-0.0.2.tar.gz
.
File metadata
- Download URL: retention_model-0.0.2.tar.gz
- Upload date:
- Size: 254.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb115dd1bfbe1542b89edc380fb314b8c14c80349c6f8bccd78115f4b7a64d75 |
|
MD5 | fe35065114e34fb2062ba91d2316e60b |
|
BLAKE2b-256 | b8f91f4e52a907a0ed493bc7a9f530b814391673b756b8451bafd7660385e942 |