Simulations of spatial networks growth
Project description
Reticuler
Network growth simulations package.
Setup
External dependencies:
FreeFEM++ - PDE solver
Package installation
Basic usage:
pip install .
or in the develop mode (overwrites the directory in site-packages with a symbolic link to the repository, hence any changes in code will be automatically reflected):
pip install -e .
Usage
During installation two command line scripts are installed:
- reticulate - runs the simulation
- plot_ret - plots the network based on the .json file from the simulation
To use just type in the command line:
reticulate -h
or
plot_ret -h
Typical network growth simulation:
- output file: test,
- growth threshold type: maximum network height,
- growth threshold: 2
reticulate -out test --growth_params {\"growth_thresh_type\":1,\"growth_thresh\":2}
How to cite
Through history to growth dynamics - backward evolution of spatial networks, S. Żukowski, P. Morawiecki, H. Seybold, P. Szymczak (2022) (accepted)
References
[1]: P. Morawiecki, Problem odwrotny do ewolucji sieci rzecznych (2016).
[2]: S. Żukowski, Związek między geometrią sieci rzecznych a prawami ich wzrostu (2019).
[3]: S. Żukowski, Backward evolution of river networks (2021).
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file reticuler-0.1.tar.gz
.
File metadata
- Download URL: reticuler-0.1.tar.gz
- Upload date:
- Size: 20.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a4ae020718fdb7a704348c4cb2fc7c54f93ede05ac2be68c1c7689d187630cea |
|
MD5 | e891374a4225871d6ae81944c49fc330 |
|
BLAKE2b-256 | a9c5ce2dd74f221f363316682bf3b197fc907da7cc7f9dfeec395bc07878c4f0 |
Provenance
File details
Details for the file reticuler-0.1-py3-none-any.whl
.
File metadata
- Download URL: reticuler-0.1-py3-none-any.whl
- Upload date:
- Size: 22.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9bb26fac5528047a1fbd50d219dc6f4d3d072b5e438e7026c828dd59709acc11 |
|
MD5 | 36c77807eb3c68c4363882fe65d09334 |
|
BLAKE2b-256 | 851a0ed80e4a6b746d9d9889a000266508d9649afb28ea5d85927131abb83466 |